




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.2.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要3.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④4.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.65.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.6.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a7.若与互为共轭复数,则()A.0 B.3 C.-1 D.48.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.9.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.10.已知函数,则不等式的解集是()A. B. C. D.11.已知集合,集合,则等于()A. B.C. D.12.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.14.若椭圆:的一个焦点坐标为,则的长轴长为_______.15.已知函数,若,则实数的取值范围为__________.16.某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有____种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).注:若,则,,.18.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.19.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.20.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.21.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求的极坐标方程和的直角坐标方程;(Ⅱ)设分别交于两点(与原点不重合),求的最小值.22.(10分)已知函数.(1)当时,解关于x的不等式;(2)当时,若对任意实数,都成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.2.A【解析】
根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.3.A【解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.4.C【解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.5.A【解析】
根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功6.C【解析】
两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.7.C【解析】
计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.8.C【解析】
建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.9.D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.10.B【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.11.B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.12.D【解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,∴样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.14.【解析】
由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或由表示的是椭圆,则,所以,则椭圆方程为所以.故答案为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对的两个值进行取舍.15.【解析】
画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为:【点睛】本题考查利用函数奇偶性及单调性解不等式.函数奇偶性的常用结论:(1)如果函数是偶函数,那么.(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.16.60【解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ),;(Ⅲ)详见解析.【解析】
(Ⅰ)由题知这只蜻蜓是种还是种的可能性是相等的,所以,代入数值运算即可;(Ⅱ)可判断均值应为,再结合(1)和题干备注信息可得,进而求解;(Ⅲ)求得,该分布符合二项分布,故,列出分布列,计算出对应概率,结合即可求解;【详解】(Ⅰ)记这只蜻蜓的翼长为.因为种蜻蜓和种蜻蜓的个体数量大致相等,所以这只蜻蜓是种还是种的可能性是相等的.所以.(Ⅱ)由于两种蜻蜓的个体数量相等,的方差也相等,根据正态曲线的对称性,可知由(Ⅰ)可知,得.(Ⅲ)设蜻蜓的翼长为,则.由题有,所以.因此的分布列为.【点睛】本题考查正态分布基本量的求解,二项分布求解离散型随机变量分布列和期望,属于中档题18.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【详解】(Ⅰ)由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方程为(Ⅱ)令,则,,则,即,所以,,故.【点睛】本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.19.(1)增区间为,减区间为;(2).【解析】
(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围.【详解】(1)当时,,则,当时,,则,此时,函数为减函数;当时,,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.①当时,即当时,,由,得,此时,函数为增函数;由,得,此时,函数为减函数.则,不合乎题意;②当时,即时,.不妨设,其中,令,则或.(i)当时,,当时,,此时,函数为增函数;当时,,此时,函数为减函数;当时,,此时,函数为增函数.此时,而,构造函数,,则,所以,函数在区间上单调递增,则,即当时,,所以,.,符合题意;②当时,,函数在上为增函数,,符合题意;③当时,同理可得函数在上单调递增,在上单调递减,在上单调递增,此时,则,解得.综上所述,实数的取值范围是.【点睛】本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.20.(1),,.(2)当时,此时选择火车运输费最省;当时,此时选择飞机运输费用最省;当时,此时选择火车或飞机运输费用最省.【解析】
(1)将运费和损耗费相加得出总费用的表达式.(2)作差比较、的大小关系得出结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物品定金合同范本
- 2025年圆柱型锌空气电池合作协议书
- 建筑道路合同范本
- 2025年度保险理赔居间服务合作协议样本(含业务创新)
- 加盟意向金合同范本
- 管桩运输合同违约案例分析
- 2025-2030年中国环网柜市场需求状况及发展盈利分析报告
- 2025-2030年中国燃气灶具行业前景趋势与发展战略研究报告
- 2025-2030年中国炼油化工设备市场需求状况及发展前景分析报告
- 2025-2030年中国洗衣连锁市场运行状况及发展趋势预测报告
- 微信视频号运营技巧攻略详解全套
- 2023CSCO非小细胞肺癌诊疗指南解读
- 利息理论期末考试模拟测试试题含参考答案
- 干部选拔任用程序
- 部编人教版五年级下册道德与法治简答题归纳总结
- 2023高二开学第一课《蜕变》-主题班会
- 口服降糖药物分类详解课件
- 二级生物安全实验室设计建造与运行管理指南
- 围手术期疼痛护理课件
- 外国新闻传播史-张昆课件
- 圆圈正义:作为自由前提的信念
评论
0/150
提交评论