江西省南昌市高中名校2021-2022学年高考冲刺模拟数学试题含解析_第1页
江西省南昌市高中名校2021-2022学年高考冲刺模拟数学试题含解析_第2页
江西省南昌市高中名校2021-2022学年高考冲刺模拟数学试题含解析_第3页
江西省南昌市高中名校2021-2022学年高考冲刺模拟数学试题含解析_第4页
江西省南昌市高中名校2021-2022学年高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线:的一条渐近线方程为,则()A. B. C. D.2.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为()A. B. C. D.3.已知数列an满足:an=2,n≤5a1A.16 B.17 C.18 D.194.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]5.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.6.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.7.数列满足:,则数列前项的和为A. B. C. D.8.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.29.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.10.集合的真子集的个数为()A.7 B.8 C.31 D.3211.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④12.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的各项均为正数,,且,若,则________.14.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.15.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.16.若曲线(其中常数)在点处的切线的斜率为1,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分别是棱AB,PC的中点.求证:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.20.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.21.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.22.(10分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(Ⅱ)从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;(Ⅲ)记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.2.C【解析】

利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,,由,与相似,所以,即,又因为,所以,,所以,即,,所以双曲线C的渐近线方程为.故选:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。3.B【解析】

由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【详解】解:an即a1=an⩾6时,a1a1两式相除可得1+a则an2=由a6a7…,ak2=可得aa1且a1正整数k(k⩾5)时,要使得a1则ak+1则k=17,故选:B.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.4.B【解析】

先求出,得到,再结合集合交集的运算,即可求解.【详解】由题意,集合,所以,则,所以.故选:B.【点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.5.D【解析】

将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.6.D【解析】

根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.7.A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.8.B【解析】

化简得到z=a-1+a+1【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.9.B【解析】

根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.10.A【解析】

计算,再计算真子集个数得到答案.【详解】,故真子集个数为:.故选:.【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.11.D【解析】

因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.12.C【解析】

易得,,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设等差数列的公差为,根据,且,可得,解得,进而得出结论.【详解】设公差为,因为,所以,所以,所以故答案为:【点睛】本题主要考查了等差数列的通项公式、需熟记公式,属于基础题.14.【解析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.15.(或写成)【解析】试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为考点:函数最值,函数单调区间16.【解析】

利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【详解】(1)由,得,得,由正弦定理得,显然,同时除以,得.所以.所以.显然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【点睛】本题主要考查了正余弦定理与面积公式在解三角形中的运用,需要根据题意用正弦定理进行边角互化,再根据三角恒等变换进行化简求解等.属于中档题.18.(1);(2)最小值为,此时【解析】

(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,,是最小值,此时,所以,所求最小值为,此时【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.19.(1)见解析;(2)见解析【解析】

(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面.【详解】证明:(1)如图,取的中点,连接,,是棱的中点,底面是矩形,,且,又,分别是棱,的中点,,且,,且,四边形为平行四边形,,又平面,平面,平面;(2),点是棱的中点,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【点睛】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题.20.(1)见解析;(2)【解析】

(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.21.(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.22.(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)根据茎叶图求出满足条件的概率即可;(Ⅱ)结合图表得到6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论