回归分析spss课件_第1页
回归分析spss课件_第2页
回归分析spss课件_第3页
回归分析spss课件_第4页
回归分析spss课件_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

*1回归分析*2相关与回归分析线性回归曲线估计*3第一节线性回归分析一、简单线性回归分析二、多重线性回归分析*4例1表1为一项关于儿童健康和发展的研究中10名学龄儿童的身高和体重资料。表110名学龄儿童的身高和体重一、简单线性回归分析

*5建立数据文件:身高与体重的回归分析.sav.定义变量*6建立数据文件:身高与体重的回归分析.sav.定义变量输入数据*7建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析:绘制散点图:Graphs→Scatter→SimpleScatter→Define定义变量:体重→YAxis,身高→XAxis*8建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)*9建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)选择统计量:Statistics→Estimates,Confidenceintervals,Modelfit,Descriptives*10建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)选择统计量:Statistics→Estimates,Confidenceintervals,Modelfit,Descriptives绘制残差图:Plots→DEPENDNT→X:,*ZRESID(标准化残差)→Y:*11建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)选择统计量:绘制残差图:计算总体均数的估计值和预测值:Save→→PredictedValues→Unstandardize,→PredictionIntervals→Mean,Individual*12建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)选择统计量:绘制残差图:计算总体均数的估计值和预测值:在散点图中添加置信带和预测带:双击散点图进行添加,Element→FitLineattotal*13建立数据文件:身高与体重的回归分析.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:体重→Dependent,身高→Independent(s)选择统计量:绘制残差图:计算总体均数的估计值和预测值:在散点图中添加置信带和预测带:双击散点图进行添加,Element→FitLineattotal→ConfidenceIntervals→Mean(Individual)*14主要结果——散点图*15主要结果*16主要结果*17主要结果确定系数调整确定系数*18主要结果对总体回归模型检验的F值对总体回归模型检验的P值*19主要结果回归系数(第一行为截距,第二行为斜率)总体回归系数=0的假设检验的t值回归系数的标准误标准化回归系数总体回归系数=0的假设检验的P值总体回归系数的95%置信区间*20主要结果残差图*21*22练习1某研究者测量了16名成年男子的体重和臀围数据,如下表所示。请判断是否可以用线性回归来表达臀围和体重的关系,若可以,请用该数据建立用体重预测臀围的线性回归模型。*23练习2FrankAnscombe(1973)给出了下列数据,(1)请分别以Y1、Y2、Y3为因变量、X为自变量进行线性回归分析,(2)请以Y4为因变量、X为自变量进行线性回归分析;(3)针对以上结果,加以讨论。*24例2为了研究有关糖尿病患者体内脂联素水平的影响因素,某医师测定了30名患者的体重指数BMI(kg/m2)、病程DY(年)、瘦素LEP(ng/mL)、空腹血糖FPG(mmol/L)及脂联素ADI(ng/mL)水平,数据如表6所示,能否用多重线性回归表达他们的关系,若可以,建立多重线性回归方程。二、多重线性回归分析

*25*26建立数据文件:脂联素水平数据.sav.定义变量*27建立数据文件:脂联素水平数据.sav.定义变量输入数据*28建立数据文件:脂联素水平数据.sav.定义变量输入数据开始分析:绘制散点图:Graphs→Scatter→MatrixScatter→Define定义变量:体重指数、病程、瘦素、孔府血糖、脂联素→MatrixVariables*29建立数据文件:脂联素水平数据.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:脂联素→Dependent,

体重指数、病程、瘦素、空腹血糖→Independent(s)*30建立数据文件:脂联素水平数据.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:脂联素→Dependent,

体重指数、病程、瘦素、空腹血糖→Independent(s)选择统计量:Statistics→Estimates,Confidenceintervals,Modelfit,Descriptives*31建立数据文件:脂联素水平数据.sav.定义变量输入数据开始分析绘制散点图Analyze→Regression→Linear定义变量:脂联素→Dependent,

体重指数、病程、瘦素、空腹血糖→Independent(s)选择统计量:Statistics→Estimates,Confidenceintervals,Modelfit,Descriptives绘制残差图:Plots→DEPENDNT→X:,*ZRESID(标准化残差)→Y:*32主要结果——散点图*33主要结果*34主要结果*35主要结果确定系数调整确定系数复相关系数*36主要结果对总体回归模型检验的F值对总体回归模型检验的P值*37主要结果偏回归系数总体偏回归系数=0的假设检验的t值偏回归系数的标准误标准化偏回归系数总体偏回归系数=0的假设检验的P值总体偏回归系数的95%置信区间*38主要结果残差图*39例5对例4的数据选择最优模型。*40Analyze→Regression→Linear定义变量:脂联素→Dependent,

体重指数、病程、瘦素、空腹血糖→Independent(s)*41Analyze→Regression→Linear定义变量:脂联素→Dependent,

体重指数、病程、瘦素、空腹血糖→Independent(s)选择筛选最优模型的方法Mehtod→Stepwise*42主要结果——引入的变量剔除的变量最优模型*43主要结果最优模型*44主要结果最优模型*45其他筛选最优模型的方法,大家自己练习。*46练习3为研究大气污染物一氧化氮(NO)的浓度是否受到汽车流量、气候状况等因素的影响,选择24个工业水平相近城市的一个交通点,统计单位时间过往的汽车数(千辆),同时在低空相同高度测定了该时间段平均气温(℃)、空气湿度(%)、风速(m/s)以及空气中一氧化氮(NO)的浓度(×10-6),数据如下页表所示。(1)建立回归方程:*47表

某城市空气中NO浓度监测数据

*48(1)建立回归方程:以Y为因变量,以X1-X4为自变量,并按照对Y的影响大小对各自变量进行排序;(2)用前向选择法对各自变量进行筛选;(3)用后向选择法对各自变量进行筛选;(4)用逐步法对各自变量进行筛选;*49练习4余松林和向惠云搜集的17所医院人力资源利用和医院任务资料,其解释变量和反应变量分别:每月住院人数X1;每月X

线照光人数X

2;每月占用病床日数X

3;服务范围内人口数(千人)X4;每名患者平均住院日数X

5;每月使用人力(h)Y(见下表),试进行多重线性回归分析。编号X1X2X3X4X5Y115.572463472.9218.04.45566.52244.0220481339.759.56.92596.82320.423940620.2512.84.281033.15418.746505568.3336.73.901603.62549.2057231497.6035.75.501611.37644.92115201365.8324.04.601613.27755.4857791687.0043.35.631854.17859.2858691639.9246.75.152160.55994.3984612872.3378.76.18230.5810128.02201063655.08180.56.153505.931196.00133132912.0060.95.883571.8912131.42107713921.00103.74.883741.4013127.21155433865.67126.85.504026.5214252.90361947684.10157.77.0010343.8115409.203470312446.33169.410.7811732.1716463.703920414098.40331.410.7815414.9417510.218653315524.00371.66.3518854.45表17所医院人力资源利用和医院任务资料*50第二节曲线估计*51例3某研究者测得某女童1~9月的身高数据,如下表所示。试用合适的回归模型描述该月龄段女童的身高随时间变化的规律。*52建立数据文件:女童身高数据.sav.定义变量*53建立数据文件:女童身高数据.sav.定义变量输入数据*54建立数据文件:女童身高数据.sav.定义变量输入数据开始分析绘制散点图:Graphs→Scatter→SimpleScatter→Define定义变量:身高→YAxis,时间→XAxis*55观察身高与时间的趋势关系—近似对数曲线关系*56建立数据文件:女童身高数据.sav.定义变量输入数据开始分析绘制散点图:Graphs→Scatter→SimpleScatter→Define定义变量:身高→YAxis,时间→XAxisanalyze→Regression→CurveEstimation定义变量:身高→Dependent(s),时间→Indepen

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论