版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE23-浙江省衢州市2024-2025学年高二数学下学期6月教学质量检测试题(含解析)一、选择题:(本大题共10小题,每题4分,共40分,每个小题只有一个选项符合题意,多选、不选均不给分.)1.已知集合,则A∩B=()A. B. C. D.【答案】C【解析】【分析】依据交集的定义计算.【详解】由题意.故选:C.【点睛】本题考查集合的交集运算,属于简洁题.2.双曲线的渐近线方程为()A. B. C. D.【答案】B【解析】【分析】依据双曲线的标准方程得,然后可得渐近线方程.【详解】由已知,∴渐近线方程为,即.故选:B.【点睛】本题考查求双曲线的渐近线方程,属于基础题.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】【分析】利用集合法推断.【详解】因为所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查逻辑条件的推断,还考查了理解辨析的实力,属于基础题.4.将函数的图象向右平移个单位长度后,所得函数图象的解析式为()A. B. C. D.【答案】D【解析】【分析】利用由函数沿着轴向左平移个单位时“左加”,向右平移个单位时“右减”,即可得函数的图象规律可得解.【详解】的图象向右平移个单位长度,则故选:D【点睛】本题考查了三角函数的图象变换,重点考查学生对三角函数图象变换规律的理解与驾驭,能否正确处理先周期变换后相位变换这种状况下图象的平移问题,反映学生对所学学问理解的深度.5.已知变量x,y满意约束条件,则z=2x+y的最小值为()A.14 B.8 C.6 D.4【答案】C【解析】【分析】作出可行域,为直线的纵截距,数形结合求出最小值.【详解】作出可行域如图所示:目标函数转化为直线,为直线的纵截距,,则,数形结合可知当直线过点时取得最小值为.故选:C【点睛】本题考查简洁的线性规划问题,属于基础题.6.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A. B. C. D.【答案】A【解析】把该三视图还原成直观图后的几何体是如图的四棱锥,红色线四棱锥A-BCDE为三视图还原后的几何体,其表面积为.选A.点睛:(1)解决本类题目的关键是精确理解几何体的定义,真正把握几何体的结构特征,可以依据条件构建几何模型,在几何模型中进行推断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.7.已知常数,则的图象可能是()A. B.C. D.【答案】D【解析】【分析】依据a的范围推断出当时,可解除B、C,再推断当时y的符号即可选出答案.【详解】因为,所以当时,,解除B、C;当时,,解除A选D.故选:D【点睛】本题考查函数图象的判别,属于基础题.8.若存在实数,使得函数有三个零点,则满意要求的实数的个数为()A. B. C. D.【答案】C【解析】【分析】令,得出,转化为曲线与函数的图象有三个交点,分曲线的左支、右支分别与抛物线相切,以及曲线过原点三种状况探讨,数形结合可求得实数的值.【详解】令,得出,则曲线与函数的图象有三个交点,①若,,如下图所示,若使得曲线与函数的图象有三个交点,则直线与抛物线相切,联立,可得,,解得;②当时,若使得曲线与函数的图象有三个交点,同理可得;③当时,令,即,解得或,合乎题意.综上所述,满意条件的值有个.故选:C.【点睛】本题考查利用函数的零点个数求参数,解答关键就是抓住直线与曲线相切的临界位置进行分析,考查数形结合思想的应用,属于中等题.9.在底面为锐角三角形的直三棱柱中,是棱的中点,记直线与直线所成角为,直线与平面所成角为,二面角平面角为,则()A. B. C. D.【答案】A【解析】【分析】设三棱柱是棱长为的正三棱柱,是棱的中点,以为原点,在平面中,过作的垂线为轴,为轴,为轴,建立空间直角坐标系,利用空间向量法和空间夹角公式分别求出,和,即可比较出的大小.【详解】解:由题可知,直三棱柱的底面为锐角三角形,是棱的中点,设三棱柱是棱长为的正三棱柱,以为原点,在平面中,过作的垂线为轴,轴,为轴,建立空间直角坐标系,则,,,,,,,,直线与直线所成的角为,,,直线与平面所成的角为,,平面的法向量,,,设平面的法向量,则,取,得,二面角的平面角为,由图可知,为锐角,即,,,由于在区间上单调递减,,则.故选:A.【点睛】本题考查利用空间向量法求异面直线所成的角、线面角、面面角,考查了计算求解实力,属于中档题.10.已知数列中,,若对于随意的,不等式恒成立,则实数的取值范围为()A. B.C. D.【答案】B【解析】【分析】先依据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于随意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.二、填空题:(本大题共7小题,多空题每空3分,单空题每题4分,共36分.)11.直线的斜率为________,倾斜角为________【答案】(1).(2).【解析】【分析】由直线的一般方程的斜率可得,由可得倾斜角.【详解】,,故答案为:;【点睛】本题考查直线的斜率与倾斜角.属于基础题.这类题留意直线倾斜角的范围是,而这个区间不是正切函数的单调区间,因此假如依据斜率求倾斜角的范围时,要分与两种状况探讨.12.已知向量,若,则m=________;若,则m=________【答案】(1).(2).4【解析】【分析】当时,解方程即得解;当时,解方程即得解.【详解】因为,所以.因为,所以.故答案为:【点睛】本题主要考查向量平行垂直的坐标表示,意在考查学生对这些学问的理解驾驭水平.13.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰·纳皮尔正是在探讨天文学的过程中,为了简化其中的计算而独创了对数,后来天才数学家欧拉发觉了对数与指数的关系,即.现已知,则________,________【答案】(1).(2).1【解析】【分析】依据题意将a,b表示为对数式,依据对数运算性质及换底公式化简求值.【详解】,,;.故答案为:;1【点睛】本题考查指数式与对数式的互化、对数运算性质及换底公式,属于基础题.14.已知△ABC中,AB=BC=4,AC=2,点D为AB延长线上一点,BD=2,连接CD,则CD=________,的面积为________【答案】(1).(2).【解析】【分析】利用余弦定理求得,由此求得,再由余弦定理求得.求得,结合三角形面积公式求得的面积.【详解】在三角形中,,所以,在三角形中,由余弦定理得.,所以.故答案为:;【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于中档题.15.已知椭圆上有一点,F为右焦点,B为上顶点,O为坐标原点,且,则椭圆C的离心率为________【答案】【解析】【分析】由题意可得直线的方程,求出到直线的距离,且求出的值,求出的面积及的面积,再由题意可得,的关系,进而求出椭圆的离心率.【详解】由题意可得直线的方程为:,即,所以到直线的距离,因为,所以,而,因为,所以,整理可得:,整理可得,解得,故答案为:【点睛】本题主要考查椭圆的简洁几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些学问的理解驾驭水平.16.已知且,则的最小值为________【答案】【解析】【分析】先由题得,再得到即得解.【详解】当且仅当时取到最小值.故答案为:【点睛】本题主要考查肯定值三角不等式的应用,考查基本不等式求最值,意在考查学生对这些学问的理解驾驭水平.17.当时,不等式恒成立,则a的取值范围是________【答案】【解析】【分析】利用换元法构成新函数,利用导数,分类探讨,依据新函数的单调性和取特别值法,结合二次函数的性质进行求解即可.【详解】令,所以有,化简得:设函数,原问题等价于在时恒成立,,当时,,因此当时,单调递增,要想在时恒成立,只需,解得,而,所以;当时,,因为,所以,故不成立,明显此时在时不恒成立,综上所述:故答案为;【点睛】本题考查了已知不等式恒成立利用导数求参数取值范围,考查了数学运算实力.三、解答题:(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.)18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(-4,3).(1)求cosα的值;(2)若角β满意sin(α-β)=,求sinβ的值.【答案】(1);(2)或.【解析】【分析】(1)利用三角函数的坐标定义求cosα的值;(2)求出,,再依据化简求值得解.【详解】解:(1)∵角α终边过点,,,所以;(2)∵为其次象限角,,∴.∵,∴,∴∴或.【点睛】本题主要考查三角函数的坐标定义,考查同角的平方关系的应用,考查差角的正弦公式的应用,意在考查学生对这些学问的理解驾驭水平.19.如图,在三棱锥P—ABC中,PA⊥平面ABC,AC⊥BC,D为PC中点,E为AD中点,PA=AC=2,BC=1.(1)求证:AD⊥平面PBC:(2)求PE与平面ABD所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)先通过线面垂直判定定理,得出平面PAC,所以,由等腰三角形的性质可得,,可得最终结果.(2)以C为坐标原点建立空间直角坐标系,求A,B,P,D,E点的坐标,求平面ABD的法向量为,利用线面角的公式即可得出结果.【详解】(1)证明:∵平面ABC,∴又因为,∴平面PAC,∴.∵,D为PC中点,∴,又∵,∴平面PBC;(2)以C为坐标原点建立如图空间直角坐标系,,,∴,,∴,,.设平面ABD的法向量为,则,令,则,得.设PE与平面ABD所成角为,则.【点睛】本题考查了线面平行的判定定理、线面角等基本学问,考查了空间想象实力、数学运算实力和逻辑推理实力,转化的数学思维,属于中档题目.20.设数列的前n项和为(1)试求的值及数列的通项公式;(2)数列满意:,记数列的前n项和为.求证:.【答案】(1);;(2)证明见解析.【解析】【分析】(1)在已知等式中令可求得,已知等式中用代换()得另一等式,两式相减可得的递推式,说明数列是等差数列,从而可得通项公式;(2)由(1)求出后有累加法求得,写出和式,并用放缩法证得结论.【详解】解:(1)由题意,因为,所以,∵,,∵,∴,∴数列是等差数列,∴;(2),∴,,由累加法得.,,∴.【点睛】本题考查由与的关系式求通项公式,考查证明数列不等式,考查用累加法求通项公式,用放缩法证明数列不等式,本题属于中档题.21.如图,抛物线焦点为F(1,0),E是抛物线的准线与x轴的交点,直线AB经过焦点F且与抛物线交于A,B两点,直线AE,BE分别交y轴于M,N两点,记,的面积分别为.(1)求抛物线C的标准方程;(2)是否为定值?若是,求出该定值;若不是,请说明理由;(3)求的最小值.【答案】(1);(2)是定值,4;(3)5.【解析】【分析】(1)由焦点坐标得焦参数后可得抛物线方程;(2)由于直线AB的斜率不行能为0,故可设,代入抛物线方程整理后得一元二次方程,设,,则,.由计算和,并计算可得定值;(3)在(2)基础上,由点坐标求出点坐标,同理得坐标,得(仍旧代入),这样可用表示,换元设(),利用函数的单调性可得最小值.【详解】解:(1)∵抛物线的焦点为,∴,∴抛物线方程为;(2)由已知可得,,由于直线AB的斜率不行能为0,故可设,联立,消去x并整理得:,设,,则,.所以,,而,所以(定值);(3)直线,可得,同理,∴,即,∴,令则,由对勾函数的性质知在上是增函数,在上是增函数,所以时,,此时.故的最小值是5,此时直线轴.【点睛】本题考查求抛物线的方程,考查直线与抛物线相交,直线与抛物线相交中的定值与最值问题的解题方法是“设而不求”的思想方法,设直线方程(是参数,下面全部量都用表示并求解),设交点为,直线方程代入抛物线方程整理后应用韦达定理得,然后用两点坐标求出面积,线段长度后代入转化为的表达式后可求解.22.已知函数(1)若,求函数的零点;(2)若不存在相异实数、,使得成立.求实数的取值范围;(3)若对随意实数,总存在实数、,使得成立,求实数的最大值.【答案】(1)零点分别是:、、;(2);(3).【解析】【分析】(1)解方程即可得出函数的零点;(2)将函数的解析式表示为分段函数的形式,对实数分、、三种状况探讨,分析函数在区间上的单调性,结合题中结论可求得实数的取值范围;(3)由题意可得,对实数分、、三种状况探讨,分析函数在区间上单调性,求得函数在区间上的最大值和最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学科学教师教学工作总结
- 视频会议系统项目验收和测试方案
- 在小学同学会上的发言稿
- 成都师范学院《计算机网络基础》2023-2024学年期末试卷
- 沥青稳定碎石施工方案
- 红色简约国风边框满江红课文
- 2024对外贸易合同范本的中英文对照
- 2024个人住房装修合同标准样本模板
- 成都锦城学院《大数据技术基础》2022-2023学年期末试卷
- 2024实验中学女教职工权益保护专项集体合同
- GB/T 9439-2023灰铸铁件
- 拖拉机自动导航算法研究
- (完整word版)Word信纸(A4横条直接打印版)模板
- 施乐打印机M225M228中文说明书
- 电动吸引器吸痰技术操作考核评分标准
- 现代植保技术课件
- 沪科版九年级物理 (电阻和变阻器)探究电路教育教学课件
- 初中生法治教育讲座课件
- 牙颌面畸形-牙颌面畸形与正颌外科(口腔颌面外科课件)
- 清华大学中学生标准学术能力诊断性测试2024学年数学高三上期末学业水平测试模拟试题含解析
- 第二语言习得研究期末复习题
评论
0/150
提交评论