版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.4均值不等式及其应用
第二章等式与不等式人教B版(2019)尝试与发现(1)假设一个矩形的长和宽分别为a和b,求与这个矩形周长相等的正方形的边长,以及与这个矩形面积相等的正方形的边长,并比较这两个边长的大小;(2)如下表所示,再任意取几组正数,算出它们的算术平均值和几何平均值,猜测一般情况下两个数的算术平均值与几何平均值的相对大小,并根据(1)说出结论的几何意义.a12b14131均值不等式如果a,b都是正数,那么当且仅当a=b时,等号成立.证明因为a,b都是正数,所以即
而且,等号成立时,当且仅当,即a=b.
值得注意的是,均值不等式中的a,b可以是任意正实数,因此我们可以代入任意满足条件的数或式子,比如
一定是正确的.均值不等式也称为基本不等式(基本不等式中的a,b还可以为零),其实质是:两个正实数的算术平均值不小于它们的几何平均值.那么,均值不等式有什么几何意义呢?将均值不等式两边平方可得≥ab.
如果矩形的长和宽分别为a和b,那么矩形的面积为ab,
可以看成与矩形周长相等的正方形的面积,因此均值不等式的一个几何意义为:所有周长一定的矩形中,正方形的面积最大.探索与研究
如图所示的半圆中,AB为直径,O为圆心.
已知AC=a,BC=b,D为半圆上一点,且DC⊥AB,算出OD和CD,给出均值不等式的另一个几何意义.例3
(1)已知矩形的面积为100,则这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?(2)已知矩形的周长为36,则这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?分析:在(1)中,矩形的长与宽的积是一个常数,要求长与宽之和的两倍的最小值;在(2)中,矩形的长与宽之和的两倍是一个常数,要求长与宽之积的最大值.x=y=9当两个正数的积为常数时,它们的和有最小值;当两个正数的和为常数时,它们的积有最大值.例3的结论可以表述为:
例5的结论也是经常要用的.不难看出,均值不等式与例5的结论既有联系,又有区别.区别在于例5中去掉了a,b是正数的条件,联系在于均值不等式可以看成例5结论的一种特殊情况.练习巩固DCDCDCB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国氨纶内裤数据监测研究报告
- 车辆担保合同
- 北京联合大学《人机交互设计》2022-2023学年期末试卷
- 北京联合大学《可编程逻辑器件》2022-2023学年期末试卷
- 电子元器件代理销售合同
- 北京联合大学《电路信号与系统》2022-2023学年期末试卷
- 北京联合大学《单片机原理》2023-2024学年期末试卷
- 国际投资合作框架协议
- 代理采购合同模板
- 宠物寄养及用品租赁协议
- 2024年山东省临沂市兰陵县中考二模地理试题
- 汽车机械基础:汽车常用轴系零部件
- 麦当劳的企业发展战略
- 技能成才强国有我主题班会
- 民用建筑电线电缆防火技术规程DBJ-T 15-226-2021
- MOOC 信息安全导论-青岛大学 中国大学慕课答案
- 单孔胸腔镜手术肺结节
- 中频炉停水停电应急专项预案
- 幼儿园主题探究活动
- MOOC 电气测量与信号处理-北京理工大学 中国大学慕课答案
- 2024年孝感安陆市浩源自来水公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论