版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页9.若实数x满足x2−22x−1=0,则10.若9a-3b+c=0且a≠0,则一元二次方程ax²+bx+c=0必有一个根是.11.已知关于x的方程k−1x²+(1)当k为何值时,此方程为一元一次方程?并求出此方程的解.(2)若此方程为一元二次方程,求k的取值范围.12.先化简,再求值:a−2a2−1÷(a−1−13.已知关于x的一元二次方程(x—1)(x-2)=m+1(m为常数).(1)若它的一个实数根是关于x的方程-3(x-m)+6=0的根,求m的值;(2)若它的一个实数根是关于x的方程2(x一n)-4=0的根,求证::m--n≥-1.14.如图,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积都为144m²,求甬路的宽度.(根据题意列出方程即可)延伸探究提优15.教材或资料中会出现这样的题目:把方程12(1)下列式子中,哪几个是方程12circle112x2(2)方程1216.请阅读下列材料:问题:已知方程x²+x−1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,即x=把x=y2代入已知方程,得化简,得y²+2y−4=0,故所求方程为y²+2y−4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x²+3x−2=0,求一个一元二次方程,使它的根分别为已知方程根的相反数;(2)已知关于x的一元二次方程ax²−bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.中考提分新题17.已知m为方程x²+3x−2022=0的根,那么m³+2m²−2025m+2022的值为().A.—2022B.0C.2022D.404418.若关于x的一元二次方程mx²+nx−1=0m≠0的一个根是x=1,则m+n的值是参考答案1.C[解析]A.当a=0时,不是一元二次方程,故本选项不符合题意;B.该方程化简后为−x−3=0,是一元一次方程,故本选项不符合题意;C.3x²+1=0是一元二次方程,故本选项符合题意;D.2x2.D[解析]利用安排比赛的场次数=邀请参赛的队伍数×(邀请参赛的队伍数−1)÷2,即可得出关于x的一元二次方程.由题意,得每队比赛的场次数为x−1,则总场次数为123.8[解析]方程二次项系数、一次项系数和常数项分别为2、k+8、−2k−3,根据二次项系数、一次项系数及常数项的和为5,得2+k+8−2k−34.∵方程ax²+bx−6=0与ax²+2bx−15=0有一个公共解是3,∴ax²+2bx−15=ax²+bx−6.∴bx−9=0,∴3b−9=0,解得b=3.将x=3代入ax²+bx−6=0,得a×3²+3×3−6=0,解得a=−即a的值是−15.由题意,得||m−1|=2且m−3≠0,解得m=−1.6.(1)当m²+1=2且m+1≠0,即m=1时,此方程是一元二次方程.(2)当m²+1=1且m+1+m−3≠0,或m+1=0且m−3≠0时,即m=0或−1时,此方程是一元一次方程.7.B[解析]根据题意,得2+32−4×2+3+8.D[解析]将x²−3x−4=0两边同时加上2x,得x²−x−4=2x,所以xx9.10[解析]·“∴x−2C.x−1x10.x=−311.(1)当k=1时,此方程为一元一次方程.此时3.x-3-0,解得x=1.(2)若此方程为一元二次方程,则A≠112.原式=⋯=∵a是方程x²−x−1=0的根a²−a−1=0a²−a=1,原式=13.(1)解关于x的方程-−3x−m+6=0得r=m+2,把.x=m+2代入方程x−1x−2整理得m²=1,解得m=1或m=−1(2)解关于x的方程:2x−n−4=0得(n+2-1)(n+2-2)=m+1整理得m=n²+n−1,所以m−n=n⁹−1.因为n²≥0,所以m-n的最小值为-114.设甬路的宽度为xm,根据题意,得(40-2x)(26-x)=144×6化简,得2x²−92x+176=0即x²−46x+88=0.15.(1)①②④⑤(2)若设它的二次项系数为a(a≠0),则一次项系数为--2a,常数项为-4a.因此二次项系数:一次项系数:常数项=1:(-2):(-4).16.(1)设所求方程的根为y,则y=-x,即x=-y,把x=-y代入方程.x²+3x−2=0,得y²−3y−2=0,即所求方程为y²−3y−2=0.(2)设所求方程的根为y,则y=1x,把x=1y代入方程ax²−bx+c=0,得α•1y2−b⋅17.B[解析]∵m为方程.x²+3x−2022=0的根∴m²+3m−2022=0,∴m²+3m=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版品德与社会五年级上册全册教案
- 开发耐低温材料保障极地工程安全
- 现代工程图学习题集答案-第三版-主编杨裕根第3章
- 高一化学达标训练:第一单元化学反应速率与反应限度
- 2024届西安市航空六一八中学高考化学四模试卷含解析
- 2024高中语文第一单元第2课装在套子里的人提升训练含解析新人教版必修5
- 2024高考地理一轮复习第二章地球上的大气第三讲气压带和风带学案
- 2024高考化学一轮复习第九章有机化合物第一讲甲烷乙烯苯规范演练含解析新人教版
- 贷款违约调解协议书
- 大数据时代语言学
- 《旅游销售技巧》课件
- 2025年教师资格证考试教育理论基础知识必考的250个重点
- 《海关业务》课件-项目三 商品归类
- 新员工入职培训员工手册
- 北京生命科技研究院 笔试
- 2023年上半年反洗钱人员考试题库(参考600题)
- 电子招投标测试试题汇编
- 飞书手把手使用教程培训
- 2025届山东省潍坊市高三物理第一学期期中经典试题含解析
- 《医院医疗质量安全管理提升年实施方案》
- 2024年广东省公务员录用考试《行测》试题及答案解析
评论
0/150
提交评论