![Efficiency Improvement coupling Multi-Speed - Tesionline:效率的提高耦合的多速tesionline_第1页](http://file4.renrendoc.com/view3/M03/22/26/wKhkFmbAbgWAFm-RAAPw7Y-wxBM537.jpg)
![Efficiency Improvement coupling Multi-Speed - Tesionline:效率的提高耦合的多速tesionline_第2页](http://file4.renrendoc.com/view3/M03/22/26/wKhkFmbAbgWAFm-RAAPw7Y-wxBM5372.jpg)
![Efficiency Improvement coupling Multi-Speed - Tesionline:效率的提高耦合的多速tesionline_第3页](http://file4.renrendoc.com/view3/M03/22/26/wKhkFmbAbgWAFm-RAAPw7Y-wxBM5373.jpg)
![Efficiency Improvement coupling Multi-Speed - Tesionline:效率的提高耦合的多速tesionline_第4页](http://file4.renrendoc.com/view3/M03/22/26/wKhkFmbAbgWAFm-RAAPw7Y-wxBM5374.jpg)
![Efficiency Improvement coupling Multi-Speed - Tesionline:效率的提高耦合的多速tesionline_第5页](http://file4.renrendoc.com/view3/M03/22/26/wKhkFmbAbgWAFm-RAAPw7Y-wxBM5375.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EfficiencyImprovementcouplingMulti-SpeedTransmissionstoTractionDrives
MarcoSantoro
Abstract
UsingsimulationmodelsdevelopedinaMATLAB®-Simulink®environment,thecontinuousbehaviourofavehicleisapproximatedasaseriesofdiscretesteps.Duringeachstepthecomponentsareassumedtobeatsteadystate,andthisassumptionallowstheuseofpower-usageorefficiencymapsforthecomponents,whicharederivedfromsteady-statetestsinthelaboratory.Inthisway,bymodifyingthedefaultlayoutofADVISOR©(ADvancedVehIcleSimulatOR),ananalysistoolforusewithMATLABandSimulink,isshownthatbycouplingmulti-speedtransmissionswithtractiondrivesinelectricandhybridvehicles,betterenergy-conversionefficienciesmaybegained.
Keywords:electricdrive,efficiency,energy,simulation,transmission.
1 Figuresofmeritoftractiondrivesforvehicularapplications
Thecomparisonoftractiondrivesforvehicularapplicationsbasedontheirtechnicaldataisacomplexchallenge.Theenergystoragesystem'snominalvoltagerequiredbymostofthetractiondrivesonthemarketvariesbetweenUbatt=90VandUbatt=600V,themaximumspeedofthedrivesiscomprisedbetweenmax=4,000rpmandmax=10,000rpm,themaximumtorquebetweenTmax=90NmandTmax=400Nm.Severaldrivesareliquid-cooled,someothersareair-cooledandothersareoil-cooled.
Criteriatocomparesuchdifferentdrivetechnologieshavetobebasedonmeaningfulvariablesmeasurableontestbenches[1;2;3;4]oravailableindatasheets.
Themaximumpower(Pmax)ofadriveisoftentheonlycriteriaconsidered.NonethelessPmaxislimitedbythemaximumallowablecurrentfrombatteries-whichissometimesatrade-offbetweenthedesiretogetthehighestpossiblepowerfromthedriveandtheneedtoguaranteealonglifetothebatteries-andthemaximumallowablecurrentflowinginthepowersemiconductorsintheinverter.Themotoritselfhasnodirectpowerlimits:itsperformanceislimitedbythewindings'insulationtemperature.Fromthispointofviewthemotorcanbethoughtasanaccumulatorofthermalenergyinwhichthelossesofthemotorarestored.Thermalenergyiscontinuouslydissipatedovertheoutputshaft,themotor'ssurfaceandthecoolant.Partofmotor'spowerloss(Ploss)notremovedbythecoolantcausesthemotortoheat:theresultingwindings'temperaturedependsthusontheloadserviceofthemotor.Aparameterrepresentingthisbehaviouristhecontinuouspower(Pcont),definedasthepowerthedrivecancontinuouslyprovidewithoutoverheating:Pcontisreachedwhenthemotor'spowerlossisjustlikethemaximumpowerofthecoolingsystem.Fromthispointofview,themoreinherentlyefficientamotoris,thegreaterthetorqueis,atwhichthemaximumallowablewinding'stemperatureisreached.
Themaximumpowerofatractiondriveisthusacriteriaforsizingtheinverterandthebatterieswhilethecontinuouspowerdependsonthemotor'stechnologyandthecoolingsystem.Somedrivescandevelopthemaximumpoweronlyforshortperiodsutilisingtheirthermalcapability:theycanbeoverloaded.Otherdrivescanfurnishtheirmaximumpowerforonehouratleast:theycannotbeoverloadedandtheirmaximumpowercoincidestothecontinuouspower.
Anothercomparingcriteriaistheoverloadcapability-orbetterovertorquefactor,asPmaxisfurnishedwhentheoutputtorqueexceedsforshortperiodsthemaximumcontinuoustorque-,definedastheratiobetweenthemaximumpowerandthecontinuouspower(Eq.1).
(1)
Ahighovertorquefactorisadvantageousduringpassingmaneuver,rapidaccelerationsandstartingongrades.
Inordertocomparedifferenttractiondrivesoftenaredefinedparametersrelatingthecontinuouspowertothedrive'smassandvolume:thecontinuouspowertoweightratio-thespecificpower-andthecontinuouspowertovolumeratio(Eq.2).Thedrive'smassentailsthemassesofmotor,inverterandconnectingcables.
(2)
Agoodpowerperformanceisrequiredwhileclimbing,duringaccelerationsanddrivingathighspeeds."Aggressive"accelerationsusuallyneedhighwheel-torquevaluesatmoderatespeedsforshorttimeswhilehighway-cruisingrunsrequirehightractionpowersforlongtimes.Themaximumavailabletorquetothewheels(Eq.3)whenthevehicleisstartingistheproductofthedrive'smaximumtorque(Tmax)tothelowestgearratio(1).
(3)
(4)
Theclimbingability(Eq.5)canberepresentedbytheproductofthedrive'smaximumtorquetothedrive'smaximumspeed[5].
(5)
PclimbismuchgreaterthanPmaxandcannotactuallybegenerated,butifitisdividedbythemaximumwheelspeedwhichcanbereachedoveragearratio,Pclimbrepresentsthemaximumwheeltorqueavailablewiththegearratio-whendividedbythemaximumwheeltorqueavailablewithagearratio,isthemaximumwheelspeedcanbereachedwiththatgearratio(Eq.6,forthe1stgearratio).
(6)
Inordertoestimatethequalityofdrives,onemustsometimesrefertotheefficiency(Eq.7)ofthedriveinoneoperatingpoint.Thisisagoodparameterformotorsinsteadyoperationinornearaparticularoperatingpoint.Forexamplelookingatadrive'sfrequencydistributionD(,T)ofoperatingpoints(figure1)duringadrivingscheduleliketheNewEuropeanDrivingCycle(NEDC,infigure2),itisclearthatlow-torque/high-speedandlow-speed/high-torqueoperatingpointshavetobereachedmostlyduringthiscycle.
(7)
(8)
Figures1,2and3:Drive'soperatingpointsdistributionovertheNewEuropeanDrivingCycle(above).Thevaluesinthemaparetheefficienciesintheoperatingpoints.Thedistributionreferstoanelectricvehicleabletoreachamaxspeedof145km/h,havingamassof1090kg,providedwithone-speedtransmission.NewEuropeanDrivingCycle(left),constitutedbyfourconsecutiveurbandrivingschedulesandonehighwaydrivingschedule.OperatingpointsovertheNEDC(right)ofaMannesmannSachs25
HYPERLINKmailto:kW@130
kW@130
Vdc,permanent-magnettractiondrivepropellingtheelectricvehicledescribedabove.
Amoresignificantandusefulparameterforthequalityestimationofdrivesconceivedforvehicularapplicationsisanintegralcriteriarepresentingtheefficiencyoverthewholedrivingcycle.Thisisdefinedastheratiobetweentheintegralofthemechanicalpowerfurnishedandtheintegraloftheelectricalpowerabsorbedduringthewholedrivingcycle(Eq.9),
(9)
wherethepowerlossPlossdependsonspeed,torqueandbatteryvoltage.
Thedrive'sbasespeedrangeisthespeedrangeinwhichthedrivecandevelopaconstantmaximumtorque.Thefieldweakeningrangeisthespeedrangeinwhichthedrivecanfurnishaconstantmaximumpower.Thefieldweakeningratio(Eq.10)istheratiobetweenthemaximumspeedandthehighestspeedinthebasespeedrange(thebasespeed).Intractiondrives,inordertogetaverygoodclimbingability,itispreferabletohavethehighestpossiblefieldweakeningratio(>2.5).
(10)
whereisthegradientoftheroad.
Figure4:GeneralElectric83-kWACinductionmotor/inverterefficiencymapandcontinuoustorquecapability.ThedrivewastestedbyProfessorDougNelsonatVirginiaUniversityofTechnology(USA).Onthespeedaxisareindicatedthemaximumspeed(max)andthebasespeed().
Figures5and6:Wheels’operatingpointsovertheNEDC(left).Wheels’operating-pointdistributionovertheNEDC(right):electricvehiclehavingamassof1090kg.
Thedrive'soptimaloperatingpointisthepointinwhichthedrivereachesitspeakefficiency.Observingthewheels’operatingpointsandtheoperatingpointsdistributionovertheNewEuropeanDrivingCycle(figg.5-6)itisevidentthatthetractiondrivehastooperatemostlyinlow-powerregions.Invehicularapplicationsthereis,therefore,theneedtoutilisetractiondrivesinwhichthehighestefficiencyregionsaresituatedinthelow-powerarea.Afigureofmeritfortractiondrivesistheratiobetweenthecontinuouspowerandthepowerdevelopedintheoptimalpoint(Eq.11).
(11)
Ahighfoptisusuallyrelatedtoagoodtractiondrive,butmoreimportantistheshapeofthecontourlinesinadrive'sefficiencymap.Itcanbeshown[6]thatcomparingtwodriveswhoseefficiencymapsareinfigures7and8,althoughthedriveinfigure7hasalowerfopt(1.2)thanthedriveinfigure8(1.5)andcomparablepeakefficiencies,theenergyconsumptionofavehicleadoptingthefirstdriveislower,atleastoverurbandrivingschedules.Thisiswhyinthefirstdrivetheregionsofhighefficiencyareextendeddeeplyeveninlow-speedareas,themostimportantinurbantraffic.Theefficiencyfactorfoptcangiveafirsthintonhowgoodanelectricdrivefortractionpurposeswillberegardingtheenergy-efficiency.Itisnotanabsolutecriterionandcannotreplaceasimulationofthetotalenergyconsumptionoverdifferentdrivingschedules.
Figures7and8:58-kWpermanent-magnettractiondrive(left)and62-kWAC-inductiontractiondrive(right):efficiencymaps.
2 Theadoptionofmulti-speedtransmissions
Theadoptionofamulti-speedtransmissionallowstomoveinthetorque/speedplaneonedrive'soperatingpoint,correspondingtooneoperatingpointinthewheel'storque/speedplane,alongaconstantpowerhyperbola.Moregenerally,thevariousgearratioscanmovealongaconstantpowerhyperbolaonepointinthedrivetrain-e.g.batteries,drive,gearbox-operatingspacecorrespondingtooneoperatingpointinthetractionwheelstorque/speedplane.Agearboxofcoursecannotmovethispointtowardshigherorlowerpowers.
Lookingatthewheels'operatingpointsdistributionovertheNEDC(figures5and6)andovertheU.S.FederalUrbanDrivingSchedule(FUDS)(figures10and11)forexample,it'sclearthatallthepointscanbe"reached"withonlyonetransmissionratio-usuallythefinaldriveratio-adoptingatractiondrivehavingfweakgreaterthan2-2.5;butthe25-kWdriveadoptedintheprevioussimulationshastooverworkeventheovertorqueregiontoprovidethehighhighwaypowersintheNEDC(figure3)andtheFUDS-high-torquevaluesinurbantraffic(figure12)andshouldthusbeoversizedtobettersatisfythepowerrequirementsofthesecycles.Thedrive'soversizingconcernsthemaximumallowabletorqueonly:themaximumspeed,thebasespeedandfweakremainunchanged.
Figure9:U.S.FederalUrbanDrivingSchedule(FUDS).
Figures10and11:Tractionwheels’operatingpoints(left)andtractionwheels'operating-pointdistribution(right)overtheUSFUDS.
Figures12and13:Drive'soperatingpoints(left)anddrive'soperating-pointdistribution(thevaluesinthemapsaretheefficienciesintheoperatingpoints)overtheUSFUDS.
Clearlythesizingofavehiclehastofollowrulesdictatedbyperformanceconstraintsonaconstantgradeandonminimumaccelerationtimes.Thevariousdrivingscheduleshavebeenconceivedtomeasureexhaustemissionsandfuel(energy)consumptiononwell-defineddrivingconditions.Theyshouldnotbeusedtosizethecomponentsofavehicle,becauseusuallytheperformancegoalsappliedinthesizingtechniquesaremorestringentthanthoserequiredtosatisfyadrivingcycle.Awell-sizedvehicleisthusableto"follow"usualdriving-cycletraceswithoutlacks.Ontheotherhand,forthisreasonatractiondriveoperatesoftenduringdrivingschedulesinpartial-load,inefficientregions.
Lookingattheshapeofthedrive'soperativeregionoveradrivingscheduleitisclearthateveryoperatingpointcanbereachedadoptingawell-sizedtractiondrivewithonlyonetransmissionratio.Thisiswhyusuallytheshapeoftheallowableoperatingregiononthedrive'storque/speedplaneisthesameasthetractionwheels'torque/speedoperatingregion.InconventionalvehiclestheICE(InternalCombustionEngine)operatingregiononthetorque/speedplaneisquitedifferent,andtosatisfytypicaldrivingschedulesthereistheneedtoadoptamulti-speedtransmissionwhichadjuststheICEoperatingregiontothetractionwheelsoperatingneeds.Thisisclearlookingforexampleatthemaximum-torqueenvelopeinaICEefficiencymap(figure14).
Figure14:Volkswagen1.9l,67-kWturbo-diesel-engineefficiencymap.
Theindividualtransmissionratiosarealwaysratedtoadjustthefullloadoutputcurveofthemulti-speedgearboxtoaconstantpowerhyperbola.Theshapeofthewheels'operatingregionisalwayscomprisedbelowaconstantpowerhyperbolaonthetorque/speedplane.Thetorquelimitsaredictatedbythemaximumtorqueatvehicle'sstartingongradesandthespeedlimitisdictatedbythemaximumvehicle'sspeed.
Tractiondriveswell-sizedhavingfweak>3cancoverthisenvelopewithonly1-speedgearbox(thefinaldrive).Inthesevehiclesthefinaldriveratioistheratiobetweenthemotor'smaximumspeedandthewheels'speedatmaximumvehicle'sspeed(Eq.12).
(12)
Withhighervaluesthemaximumvehicle'sspeedwouldnolongerbereached,althoughthetractionwheelswouldhavehighertorqueatdisposal.Furthermoretherotor'sandthegears'rotationalinertiamultipliedtothesquareofthetransmissionratioistransmittedontothewheels:whenshiftingfromthesecondtothefirstgear,kineticenergyofrotationisstoredintothedrivetrainandduringshiftingfromthefirsttothesecondgearisgivenout.Thelossesrelatedtothesechangesofspeedmustnotbedisregarded.Theproductofthe1stgearratiotothefinaldriveratio-inamulti-speedtransmission-orthefinaldriveratioina1-speedtransmissionshouldneverbegreaterthan15.
Adoptingadrivewithinsufficientfweakandtoolowmaxforcesthusthedesignertooversizeit,inordertoallowavehicleprovidedwitha1-speedtransmissionmerelytomeetconstantgradeperformances.
Inconventionalvehiclesthestep()betweentwosuccessivetransmissionratios(Eq.13)canbedesignedaccordingtotwodifferentrules:
thegeometricalrating;
theprogressiverating.
(13)
Inthegeometricalratingisconstantforalltheratiosandafterselectingthenumberofgearsitcanbeobtainedthebestadjustmentofthefullloadcurve(e.g.themaximumtorqueenvelopeinfigure14)toahyperbolaofconstantpower.Thiskindofdesignisfrequentintrucks'gearboxes.Inpassengervehiclesthegeometricalratingwouldforcetoadoptahighnumberofgearstoapproximateaconstantpowerhyperbola,sincethehighesttorqueinvehicles'enginesisusuallyreachedatveryhighspeeds.Inmodernautosisthuspreferredtheprogressiverating,whichprogressivelyreducesforthehighestgears.
Multi-speedtransmissionisthusacriticalissueinconventionalandparallelhybriddrivetrainsbutitsadoptioncouldbeusefuleveninelectric,serieshybridandfuelcellvehicles.Inthesepowertrainsthetractionpowerisfurnishedonlybyanelectricaldriveandamulti-speedgearboxassembledonthedrive'sshaftcouldallow
tocompensateforinsufficientfweakorPclimb;
toreachthemostefficientdrive'soperatingregions.
Inanelectricvehicleforexamplea2-speedtransmissioncouldbeadoptedtomeetboththefollowingrequirements:thesecondgearratiocanbechosentoallowthemaximumspeedtothevehicle,whilethefirstgearratiocanbechosentomeetthemaximumtractiveforceatlowspeeds:themaximumclimbingabilityatlowspeeds.
Inordertobetterexplainthepreviousassertionsletusconsiderthesameelectricvehiclewhosesimulationresultsareshownabove,adoptingthe33kWtractiondrivewhoseefficiencymapisinfigure17anda1-speedtransmissionwhoseratio(thefinaldriveratioinEq.14:ithasbeenassumed10%wheelslipand0.282mwheelradius)allows145km/hvehicle'smaximumspeed.AfterrunningasimulationovertheUSFUDS(figure9)withthisvehicle,areobtainedtheresultsshowninfigures15and16.
(14)
Figure15,16and17:DifferencebetweenrequestedandachievedspeedsovertheUSFUDS(above),drive'soperatingpoints(left):1-speedtransmission,=4.Siemens33
HYPERLINKmailto:kW@130
kW@130
Vdc,permanent-magnetmotor/controllerefficiencymap(right),driveintheVWGolfCitySTROMers,TypA3.
Althoughthisseconddrivecanprovideahighermaximumpower(Pcont=Pmax=33kW)thanthefirst(Pcont=25kW,Pmax=30kW)atthesameoperatingvoltage(130Vdc),thevehiclecannotsatisfactorilymeettheFUDSspeedrequirements.ThisiswhytheSiemensdrivecanprovideamaximumtorqueofonly80NmwhiletheMannesmanndrivedevelopsmorethan100Nmmaximumtorque,decreasingatincreasingspeeds.ThevehicleprovidedwiththisSiemensdrivecannotmeettheaccelerationsnecessaryinthecycleandmissedtheFUDStracebynearly20km/h(figure15).
Letusnowsupposetoassembleonthedrive'sshafta2-speedgearbox.Thetransmissionratiosarechosensoastoallowthesamevehicle'smaximumspeedandtomeettheaccelerationrequirementsintheFUDS.Iftheoverallratios(gearratiosfinaldriveratio)are
(15)
andlookingatthesimulationresultsinfigures18,19and20itcanbeassumedthattheFUDStraceisnowsatisfactorilymet.
Ithasbeenassumedthe2-speedgearboxhasamassof40kgandthevehicle'smassisthusincreasedbythisvalueinthesimulation.Thedependenceoftheshiftcommand(up,down,ornoshift)uponcurrentgear,motorspeedandloadassumingthecurrentgearismaintained,isimplementedusingone-dimensionallookuptable,oneforeachgear.Infigure19thenumberedcurvesareefficiencycontoursandtheupshiftanddownshiftlinesaredrawninthemotortorqueandspeedspace.Althoughtheplot'sy-axisismotortorque,theshiftlinesareinfactdefinedintermsofmotorload,whichisdefinedhereasthemotortorqueatagivenspeeddividedbyitsmaximumtorqueatthatspeed.Sotheactualupshiftanddownshiftlinesarenotstraightinmotortorque/speedspace,sincethemaximummotortorquedependsonspeed.Whenthemotortorque/speedoperatingpointwouldfalltotherightoftheupshiftcurve,anupshiftiscommanded.Likewise,whenthemotortorque/speedoperatingpointwouldfalltotheleftofthedownshiftcurve,adownshiftiscommanded.Thepositionoftheshiftlinesonthemotorspeed-axishasbeenchosensoastoforcethedrivetooperateasmuchaspossibleinitsoperatingregionwheretheefficiencydoesnotfallbelow10%ofitspeakefficiency.Anautomatedorrobotisedgearboxcouldimplementthiskindofoperation.
Figures18,19and20:DifferencebetweenrequestedandachievedspeedovertheUSFUDS(above):2-speedtransmission,1=8,2=4.Drive's(left)andtractionwheels'(right)operatingpoints.Thepointsinredaretransmittedthroughthefirstgear,thepointsingreenthroughthesecondgear.
Thevehicle'smodelentailsalsothegearboxofamulti-speedtransmissionwhichhousesgearsofdifferentgearratiosthatareusedtotransmittorquefromthetractivemotortothefinaldriveandontothewheels.Ittherebyallowsanumberofdiscretespeedreductionandtorquemultiplicationfactors.Effectsontorqueandspeedinthegearboxinclude:
torquemultiplicationandspeedreductionviathegearratio,
torquelossduetotheaccelerationofrotationalinertia,and
torquelossduetothefrictionoftheturninggears.
Theseeffectsaremodeledempiricallyandthenecessaryphysicalparameters[7]arebasedonaVolkswagen4-speedmanualtransaxleandsuppliedbydatafiles.IntheVWtransaxle,efficiencyisfairlyindependentoftorqueandspeedathightorques.
Table1summarisestheenergyuseofdrivesandgearboxesovertheU.S.FUDSforvariouslayouts.Thedatacontainedinthetablemustnotbeintendedasacomparisonamongdrives(figures17-21-22-23)fromdifferentmanufacturers.Thedrive-efficiencymapsareratedfordifferentdcvoltages.Thepeakefficiency,themaximumpowerandthecontourmapsdiffernotablyatdifferentoperatingvoltages:thepeakefficiencyandthemaximumpowerincreasewhilethehighestefficiencyregionsspreadatincreasingvoltages.Nonethelesstheefficiencyofthesepermanent-magnet-synchronousdrivesiscomparablewhendataareadjustedforvoltages.TheSachsdrive,forexample,isdeclaredtoreachapeakefficiencyhigherthan93%atvoltageshigherthan230Vdc[8].
DatainTable1refertothepowermodebehaviourastheefficiencymapsareusuallymeasured-orpublished-forpositivetorquevaluesonly.Forthisreason,inthemapsshowninthesepagestheregenerativeareasarerepresentedassumingthatlossesaresymmetricaboutzero-torqueaxis,butthisassumptiondoesnotallowtotrustdrive'sregen-lossdataresultingfromthesimulations.
FromTable1appearsthattheenergyactuallytransmittedbythefinaldriveontothetractionaxle(EnergyOut)differsslightly,althoughthesimulationsrefertothesamedrivingschedule.Thisiswhyithasbeenassumedthecycleissuccessfullymetifthespeedtraceisnotmissedformorethan2mph(3.2km/h).Thetraceisalwaysmetwithinthistolerance,butthelittledifferencesintheactual-speedtracesandtheslightmass-differenceamongvehiclesprovidedwithdifferentdrivesandtransmissionshavecausedthelittledifferenceintheenergyactuallytransmittedtothewheels.
LookingattheresultsinTable1itisclearthattheadoptionofa2-speedtransmissionusuallyallowsanincreaseintheenergy-conversionefficiencyintothedrive,thoughsometimesatexpenseofaslightincreasedenergylossduetotheintroductionofthegearbox.
AstudyontheSiemensdriveoversizedto60kW,asresultfromahypotheticalvehicle'ssizing,showsthattheadoptionofa2-speedtransmissioncanincreasetheenergy-conversionefficiencyintothedriveby4%overtheFUDS(Table2)andby2%overtheNEDC(Table3).
Figures21,22and23:UniqueMobilitySR218N/CA40-300L(leftabove)permanent-magnetmotor/controllerefficiencymap;Pcont=36kW,Pmax=53kW@300Vdc;peakefficiency94%.MannesmannSachsD260REL55(rightabove)permanent-magnetmotor/controller;Pcont=25kW,Pmax=30kW@130Vdc;peakefficiency90%.ToyotaPriuspermanent-magnetmotor/controller(left),testedbyNREL(USNationalRenewableEnergyLaboratory)atUniqueMobilityonApril1999;30kW@288Vdc;peakefficiency91%.
PAGE
Table1:EnergyusageindriveandgearboxovertheU.S.FederalUrbanDrivingSchedule
Component
Type
EnergyIn(kJ)
EnergyOut(kJ)
EnergyLoss(kJ)
Efficiency()
Motor/controller(oversized)
Finaldrive
Siemens58kWPM
1-spd(=4)
6621
4651
4651
4355
1970
297
0.7
0.94
Motor/controller
Gearbox+finaldrive
Siemens33kWPM
2-spd(1=8,2=4)
6182
4685
4685
4313
1497
371
0.76
0.92
Motor/controller
Gearbox+finaldrive
Siemens33kWPM
2-spd(1=9,2=4)
6219
4698
4698
4310
1521
388
0.76
0.92
Motor/controller
Finaldrive
Sachs25kWPM
1-spd(=4)
5454
4418
4418
4125
1036
293
0.81
0.93
Motor/controller
Gearbox+finaldrive
Sachs25kWPM
2-spd(1=6,2=4)
5553
4573
4573
4239
981
334
0.82
0.93
Motor/controller
Gearbox+finaldrive
Sachs25kWPM
2-spd(1=8,2=4)
5543
4581
4581
4239
962
341
0.83
0.93
Motor/controller
Gearbox+finaldrive
Sachs25kWPM
2-spd(1=4.5,2=3)
5537
4541
4541
4239
996
301
0.82
0.93
Motor/controller
Gearbox+finaldrive
Un.Mob.36kWPM
1-spd(=5)
5210
4490
4490
4171
720
319
0.86
0.93
Motor/controller
Gearbox+finaldrive
Un.Mob.36kWPM
2-spd(1=7,2=3.5)
5342
4640
4640
4285
702
355
0.87
0.92
Motor/controller
Gearbox+finaldrive
Un.Mob.36kWPM
2-spd(1=6.7,2=4)
5347
4638
4638
4285
709
353
0.87
0.92
Motor/controller
Finaldrive
Prius30kWPM
1-spd(=4)
5214
4453
4453
4159
761
294
0.85
0.93
Motor/controller
Gearbox+finaldrive
Prius30kWPM
2-spd(1=6,2=4)
5300
4610
4610
4274
690
336
0.87
0.93
Motor/controller
Gearbox+finaldrive
Prius30kWPM
2-spd(1=6,2=3)
5293
4605
4605
4274
688
332
0.87
0.93
Table2:Energyusageindrive(oversized)andgearboxovertheU.S.FederalUrbanDrivingSchedule
Component
Type
EnergyIn(kJ)
EnergyOut(kJ)
EnergyLoss(kJ)
Efficiency()
Motor/controller
Finaldrive
Siemens60kWPM
1-spd(=4)
6641
4662
4662
4365
1980
297
0.7
0.94
Motor/controller
Gearbox+finaldrive
Siemens60kWPM
2-spd(1=5,2=3)
6605
4802
4802
4477
1803
325
0.73
0.93
Motor/controller
Gearbox+finaldrive
Siemens60kWPM
2-spd(1=6,2=3)
6542
4826
4826
4477
1716
349
0.74
0.93
Motor/controller
Gearbox+finaldrive
Siemens60kWPM
2-spd(1=7,2=3)
6528
4834
4834
4477
1694
357
0.74
0.93
Motor/controller
Gearbox+finaldrive
Siemens60kWPM
2-spd(1=7,2=4)
6517
4836
4836
4477
1681
360
0.74
0.93
Motor/controller
Gearbox+finaldrive
Siemens60kWPM
2-spd(1=8,2=4)
6577
4851
4851
4477
1726
374
0.74
0.92
Table3:Energyusageindrive(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年远程工作协作平台合同
- 智能安防监控系统建设项目合同
- 施工员在合同管理中的职责
- 建筑电力工程劳务分包合同
- 舞蹈老师聘用合同
- 零件买卖合同
- 电影制作行业影片发行权转让合同
- 物流仓储项目承包合同
- 企业文化建设咨询顾问服务合同
- 工业用地买卖合同的签署注意事项
- 肿瘤全程管理
- 污泥处置合作合同模板
- GB/T 4706.10-2024家用和类似用途电器的安全第10部分:按摩器具的特殊要求
- NB/T 11446-2023煤矿连采连充技术要求
- 2024年江苏省苏州市中考英语试题卷(含标准答案及解析)
- 全科医学的基本原则和人文精神(人卫第五版全科医学概论)
- 船员健康知识课件
- 《扬州东关街掠影》课件
- 物流服务项目的投标书
- 地铁车站低压配电及照明系统
- 行业会计比较(第三版)PPT完整全套教学课件
评论
0/150
提交评论