版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年湖北省省实验中学数学试题高考冲刺卷(七)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.2.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.24.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势5.已知平面向量满足与的夹角为,且,则实数的值为()A. B. C. D.6.已知,且,则()A. B. C. D.7.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.8.已知为虚数单位,若复数满足,则()A. B. C. D.9.已知集合,,则()A. B. C. D.10.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.36011.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.12.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_______________,第_______________天该医院本次收治的所有患者能全部治愈出院.14.设函数,则______.15.《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_____人;所合买的物品价格为_______元.16.已知,为虚数单位,且,则=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列.定义随机变量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X来衡量家长对小孩饮食习惯的了解程度.(1)若参与游戏的家长对小孩的饮食习惯完全不了解.(ⅰ)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;(ⅱ)求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X<4,请判断这位家长对小孩饮食习惯是否了解,说明理由.18.(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,∠CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E.(1)求证:四边形ACC1A1为矩形;(2)求二面角E-B1C-A1的平面角的余弦值.19.(12分)设,函数,其中为自然对数的底数.(1)设函数.①若,试判断函数与的图像在区间上是否有交点;②求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.20.(12分)设复数满足(为虚数单位),则的模为______.21.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.22.(10分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.2.D【解析】
通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.本题主要考查三角函数的平移变换,难度不大.3.C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C本小题主要考查函数的奇偶性和周期性,属于基础题.4.D【解析】
根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.本题考查了折线图,意在考查学生的理解能力.5.D【解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.6.B【解析】分析:首先利用同角三角函数关系式,结合题中所给的角的范围,求得的值,之后借助于倍角公式,将待求的式子转化为关于的式子,代入从而求得结果.详解:根据题中的条件,可得为锐角,根据,可求得,而,故选B.点睛:该题考查的是有关同角三角函数关系式以及倍角公式的应用,在解题的过程中,需要对已知真切求余弦的方法要明确,可以应用同角三角函数关系式求解,也可以结合三角函数的定义式求解.7.A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.8.A【解析】分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.9.D【解析】
先求出集合B,再与集合A求交集即可.【详解】由已知,,故,所以.故选:D.本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.10.B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.11.A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.12.B【解析】
根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.161【解析】
由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果.【详解】某医院一次性收治患者127人.第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.且从第16天开始,每天出院的人数是前一天出院人数的2倍,从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为,,解得,第天该医院本次收治的所有患者能全部治愈出院.故答案为:16,1.本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.14.【解析】
由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:本题考查分段函数求值,属于简单题.15.753【解析】
根据物品价格不变,可设共有x人,列出方程求解即可【详解】设共有人,由题意知,解得,可知商品价格为53元.即共有7人,商品价格为53元.本题主要考查了数学文化及一元一次方程的应用,属于中档题.16.4【解析】
解:利用复数相等,可知由有.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(ⅰ)(ⅱ)分布表见解析;(2)理由见解析【解析】
(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率.
(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列.
(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解.【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有=24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家长的排序与对应位置的数字完全不同的概率P=.基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,∴他们在一轮游戏中,对四种食物排出的序号完全不同的概率为.(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表:X02468101214161820P(2)这位家长对小孩的饮食习惯比较了解.理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X<4)=P(X=0)+P(X=2)=,三轮游戏结果都满足“X<4”的概率为()3=,这个结果发生的可能性很小,∴这位家长对小孩饮食习惯比较了解.本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题.18.(1)见解析(2)【解析】
(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以,又因为,,,所以,因此,所以,因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,,,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.19.(1)①函数与的图象在区间上有交点;②证明见解析;(2)且;【解析】
(1)①令,结合函数零点的判定定理判断即可;②设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可.【详解】解:(1)①当时,函数,令,,则,,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;②证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且,消去,得,故满足等式,令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 626建材、家具、家电电商平台建设项目
- 2024跨境电子商务合作经营合同
- 2024股权补偿协议范本
- 2025年度主播与直播平台合作分成协议3篇
- 福建省南平市莒口中学2021-2022学年高二化学下学期期末试卷含解析
- 2024棉花种子种植基地建设与运营合同3篇
- 2024版:北京企业经营托管协议3篇
- 2024版空压机短期租赁合同
- 2024跨国企业集团内部交易合同
- 2023年教科版四年级上册英语Unit7How many stars does each group have(含答案)
- 医院心电监护术考核表
- 车工工艺课件(绪论、一章)
- 消防改造工程施工组织设计
- 中医药特色护理在老年慢性疾病养生中的应用课件
- 反恐怖防范知识课件
- 汽车发动机机械系统检修课件(全)全书教学教程完整版电子教案最全幻灯片
- 纸箱类检测讲解
- 设计阶段的HAZOP总体分析
- 2022《义务教育数学课程标准(2022版)》解读
- 螺纹及紧固件基础知识
- 滴滴打车项目融资计划书ppt课件
评论
0/150
提交评论