版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年福建省福州市平潭县新世纪学校高三“二诊”数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定是()A. B.C. D.2.已知,,,则()A. B. C. D.3.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线4.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.5.函数(),当时,的值域为,则的范围为()A. B. C. D.6.在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则()A. B. C. D.7.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.368.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或9.已知双曲线()的渐近线方程为,则()A. B. C. D.10.函数的大致图象是()A. B.C. D.11.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)12.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.14.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.15.根据如图所示的伪代码,若输入的的值为2,则输出的的值为____________.16.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.18.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.19.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.20.(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,,求的面积.21.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.22.(10分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.本题考查全称命题的否定,难度容易.2.B【解析】
利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,,故.故选:B.本题考查利用指数函数和对数函数的单调性比较大小,属基础题.3.C【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.4.C【解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.5.B【解析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.6.D【解析】
由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以.故选:D本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养7.B【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.8.C【解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.9.A【解析】
根据双曲线方程(),确定焦点位置,再根据渐近线方程得到求解.【详解】因为双曲线(),所以,又因为渐近线方程为,所以,所以.故选:A.本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.10.A【解析】
用排除B,C;用排除;可得正确答案.【详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.本题考查了函数图象,属基础题.11.C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.考查并集的求法,属于基础题.12.D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.14.【解析】
求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积.【详解】解:双曲线:双曲线中,,,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,,,,则三角形的面积为.故答案为:本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题.15.【解析】
满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.16.【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】
(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,,得出,得出,然后可得【详解】证明:(1)据题意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴当时,.又,∴,∴,∴.本题考查正弦与余弦定理的应用,属于基础题18.(1)证明见解析(0,2);(2)存在,理由见解析【解析】
(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OA⊥OB,求出b,即可知直线过定点(2)由斜率公式分别求出,,联立直线与抛物线,椭圆,再由根与系数的关系得,,,代入,,化简即可求解.【详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,,即存在常数满足题意.本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题.19.(1)(2)分布列见解析,期望为20【解析】
利用相互独立事件概率公式求解即可;由题意知,随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得,(2)由题意知,随机变量可能的取值为0,10,20,30.,,,,所以,的概率分布列为0102030所以数学期望.本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.20.(1);(2)【解析】
(1)由已知条件和正弦定理进行边角互化得,再根据余弦定理可求得值.(2)由正弦定理得,,代入得,运用三角形的面积公式可求得其值.【详解】(1)由及正弦定理得,即由余弦定理得,,.(2)设外接圆的半径为,则由正弦定理得,,,.本题考查运用三角形的正弦定理、余弦定理、三角形的面积公式,关键在于熟练地运用其公式,合理地选择进行边角互化,属于基础题.21.(1),;(2).【解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.22.(1)为增区间;为减区间.见解析(2)见解析【解析】
(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广东湛江市“菁英托举”行动专项支持岗位招聘66人(教师岗3人)笔试备考题库及答案解析
- 2024北京大学集成电路学院招聘1名劳动合同制工作人员笔试备考题库及答案解析
- 2024年车辆买卖与维修服务合同
- 2024年度租赁合同:单间出租房租金调整与支付协议
- 二零二四年度档口租赁合同:物业转让与过户条款
- 彩板房合同完整版
- 二零二四年度云计算服务合同with数据安全管理
- 二零二四年度智能家居产品采购合同(04版)
- 北京市小客车租赁公司2024年度设备采购合同
- 二零二四年度北京物联网技术研发合同
- 发动机机械系统2.0升ltg9.65维修指南车上
- 企业商务英语口语PPT培训课件
- 土壤学-李保国-土壤学习题集
- 颈托的正确使用课件
- 电力拖动自动控制系统-运动控制系统(第5版)习题答案
- 药品储存与养护技术培训课件
- 三年级上册数学课件北师大版版练习五
- 线性系统理论-郑大钟(第二版)课件
- 16.《材料的导热性》课件-2021-2022学年科学五年级上册-青岛版(五四制)
- 【三年级上册】《数字编码》课件
- 四川省乐山市各县区乡镇行政村村庄村名居民村民委员会明细
评论
0/150
提交评论