版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,若,则的取值范围是()A. B. C. D.2.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.3.设i是虚数单位,若复数()是纯虚数,则m的值为()A. B. C.1 D.34.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.5.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A. B.C. D.6.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.47.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离8.已知等差数列中,则()A.10 B.16 C.20 D.249.已知,,,若,则()A. B. C. D.10.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关11.函数的定义域为()A. B. C. D.12.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的种子,则取出了带麦锈病种子的概率是_____.14.设实数满足约束条件,则的最大值为______.15.已知一组数据,1,0,,的方差为10,则________16.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.18.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)19.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)20.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.21.(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.22.(10分)在ABC中,角A,B,C的对边分别为a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,,.因此,实数的取值范围是.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.2.A【解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.3.A【解析】
根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,∴,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.4.A【解析】
根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.5.C【解析】
由题可得,解得,则,,所以这部分男生的身高的中位数的估计值为,故选C.6.B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。7.B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r8.C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.9.B【解析】
由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.10.D【解析】
对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.11.C【解析】
函数的定义域应满足故选C.12.A【解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
求解占圆柱形容器的的总容积的比例求解即可.【详解】解:由题意可得:取出了带麦锈病种子的概率.故答案为:.【点睛】本题主要考查了体积类的几何概型问题,属于基础题.14.【解析】
试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且考点:线性规划.15.7或【解析】
依据方差公式列出方程,解出即可.【详解】,1,0,,的平均数为,所以解得或.【点睛】本题主要考查方差公式的应用.16.3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)或【解析】
(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.18.(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】
(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.∴;;;.∴随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.19.(1)分布列见解析;(2)406.【解析】
(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.20.(1)曲线的标准方程为.抛物线的标准方程为.(2)见解析【解析】
(1)由题知|PF1|+|PF2|2|F1F2|,判断动点P的轨迹W是椭圆,写出椭圆的标准方程,根据平面向量数量积运算和点A在抛物线上求出抛物线C的标准方程;(2)设出点P的坐标,再表示出点N和Q的坐标,根据题意求出的值,即可判断结果是否成立.【详解】(1)由题知,,所以,因此动点的轨迹是以,为焦点的椭圆,又知,,所以曲线的标准方程为.又由题知,所以,所以,又因为点在抛物线上,所以,所以抛物线的标准方程为.(2)设,,由题知,所以,即,所以,又因为,,所以,所以为定值,且定值为1.【点睛】本题考查了圆锥曲线的定义与性质的应用问题,考查抛物线的几何性质及点在曲线上的代换,也考查了推理与运算能力,是中档题.21.(1)(2),.【解析】
(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.22.(1)(2)【解析】
分析:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购货合同购销合同的权益保障
- 放弃参加培训的理由说明
- 工程模板施工劳务分包协议
- 个人停车库租赁合同示例
- 还款协议合同样本
- 合同调整协议格式样本
- 董事服务合同的法律效力
- 权威采购合同范本样式
- 铝合金外门窗招标方案
- 水产品购销合同范本
- 以瞄准我的妹妹没剪板
- 弹性和塑性变形的区分
- 建设单位对施工单位的管理
- 针灸的步骤和流程-标准的针灸过程介绍
- 《学习的本质》读书会活动
- 石化年产15万吨腈项目-反应器设计说明书
- 浙江省宁波市宁海县六校联考2023-2024学年九年级上学期11月月考数学试题
- 医院保安服务方案(技术方案)
- Unit-4Natural-Disasters单元整体教学设计课件-高中英语人教版(2019)必修一
- 11D703-2 液位测量装置安装
- 武汉理工建筑工程概预算课程设计(新)
评论
0/150
提交评论