版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第08讲两点分布、二项分布、超几何分布与正态分布(模拟精练+真题演练)1.(2023·甘肃天水·统考二模)已知随机变量SKIPIF1<0服从正态分布SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·吉林白山·抚松县第一中学校考模拟预测)近年来,网络消费新业态、新应用不断涌现,消费场景也随之加速拓展,某报社开展了网络交易消费者满意度调查,某县人口约为50万人,从该县随机选取5000人进行问卷调查,根据满意度得分分成以下5组:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,统计结果如图所示.由频率分布直方图可认为满意度得分X(单位:分)近似地服从正态分布SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0近似为样本平均数,SKIPIF1<0近似为样本的标准差s,并已求得SKIPIF1<0.则以下不正确的是(
)
A.由直方图可估计样本的平均数约为74.5B.由直方图可估计样本的中位数约为75C.由正态分布估计全县SKIPIF1<0的人数约为2.3万人D.由正态分布估计全县SKIPIF1<0的人数约为40.9万人3.(2023·江苏·统考一模)若随机变量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0()A.0.7 B.0.8C.0.2 D.0.34.(2023·江西·校联考模拟预测)某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的SKIPIF1<0,则此次数学考试成绩在90分到105分之间的人数约为()A.150 B.200C.300 D.4005.(2023·湖南长沙·雅礼中学校考一模)若SKIPIF1<0,则当SKIPIF1<0,1,2,…,100时(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2023·陕西安康·陕西省安康中学校考模拟预测)SKIPIF1<0年春,为了解开学后大学生的身体健康状况,寒假开学后,学校医疗部门抽取部分学生检查后,发现大学生的舒张压呈正态分布SKIPIF1<0(单位:SKIPIF1<0),且SKIPIF1<0,若任意抽查该校大学生SKIPIF1<0人,恰好有SKIPIF1<0人的舒张压落在SKIPIF1<0内的概率最大,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·河南·洛阳市第三中学校联考模拟预测)32名业余棋手组队与甲、乙2名专业棋手进行车轮挑战赛,每名业余棋手随机选择一名专业棋手进行一盘比赛,每盘比赛结果相互独立,若获胜的业余棋手人数不少于10名,则业余棋手队获胜.已知每名业余棋手与甲比赛获胜的概率均为SKIPIF1<0,每名业余棋手与乙比赛获胜的概率均为SKIPIF1<0,若业余棋手队获胜,则选择与甲进行比赛的业余棋手人数至少为(
)A.24 B.25 C.26 D.278.(2023·四川成都·成都七中校考模拟预测)袋中有6个大小相同的黑球,编号为SKIPIF1<0,还有4个同样大小的白球,编号为SKIPIF1<0,现从中任取4个球,则下列结论中正确的是(
)①取出的最大号码SKIPIF1<0服从超几何分布;②取出的黑球个数SKIPIF1<0服从超几何分布;③取出2个白球的概率为SKIPIF1<0;④若取出一个黑球记2分,取出一个白球记1分,则总得分最大的概率为SKIPIF1<0A.①② B.②④ C.③④ D.①③④9.(多选题)(2023·湖南岳阳·统考一模)若随机变量SKIPIF1<0服从两点分布,其中SKIPIF1<0,则下列结论正确的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.(多选题)(2023·全国·华中师大一附中校联考模拟预测)下列说法正确的是(
)A.随机变量X服从两点分布,若SKIPIF1<0,则SKIPIF1<0B.随机变量SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0C.随机变量X服从正态分布SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0D.随机变量X服从正态分布SKIPIF1<0,且满足SKIPIF1<0,则随机变量Y服从正态分布SKIPIF1<011.(多选题)(2023·湖北·校联考模拟预测)下列说法正确的是(
)A.已知随机变量SKIPIF1<0服从正态分布SKIPIF1<0且SKIPIF1<0,则SKIPIF1<0B.设离散型随机变量SKIPIF1<0服从两点分布,若SKIPIF1<0,则SKIPIF1<0C.若3个相同的小球放入编号为1,2,3,4的盒子,则恰有两个空盒的放法共有12种D.已知SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<012.(多选题)(2023·福建厦门·厦门外国语学校校考模拟预测)下列说法正确的是(
)A.设随机变量X等可能取SKIPIF1<0,…,n,如果SKIPIF1<0,则SKIPIF1<0B.设随机变量X服从二项分布SKIPIF1<0,则SKIPIF1<0C.设离散型随机变量SKIPIF1<0服从两点分布,若SKIPIF1<0,则SKIPIF1<0D.已知随机变量X服从正态分布SKIPIF1<0且SKIPIF1<0,则SKIPIF1<013.(多选题)(2023·湖北武汉·华中师大一附中校考模拟预测)已知某果园的每棵果树生长的果实个数为X,且X服从正态分布SKIPIF1<0,X小于70的概率为0.2,从该果园随机选取10棵果树,其中果实个数在SKIPIF1<0的果树棵数记作随机变量Y,则下列说法正确的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<014.(2023·浙江·模拟预测)有SKIPIF1<0个人在一楼进入电梯,楼上共有SKIPIF1<0层,设每个人在任何一层出电梯的概率相等,并且各层楼无人再进电梯,设电梯中的人走空时电梯需停的次数为SKIPIF1<0,则SKIPIF1<0.15.(2023·山西吕梁·统考二模)某种红糖的袋装质量SKIPIF1<0服从正态分布SKIPIF1<0,随机抽取5000袋,则袋装质量在区间SKIPIF1<0的约有袋.(质量单位:SKIPIF1<0)附:若随机变量SKIPIF1<0服从正态分布SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.16.(2023·浙江杭州·学军中学模拟预测)袋子中有6个大小相同的黑球,5个同样大小的白球,现从中任取4个球,取出一个黑球记0分,取出一个白球记1分,SKIPIF1<0表示取出的4个球的得分之和,求SKIPIF1<0的数学期望(数字作答)17.(2023·湖南岳阳·湖南省岳阳县第一中学校考二模)某企业瓷砖生产线上生产的瓷砖某项指标SKIPIF1<0,且SKIPIF1<0,现从该生产线上随机抽取10片瓷砖,记SKIPIF1<0表示SKIPIF1<0的瓷砖片数,则SKIPIF1<0.18.(2023·山西吕梁·统考二模)在一次新兵射击能力检测中,每人都可打5枪,只要击中靶标就停止射击,合格通过;5次全不中,则不合格.新兵A参加射击能力检测,假设他每次射击相互独立,且击中靶标的概率均为SKIPIF1<0,若当SKIPIF1<0时,他至少射击4次合格通过的概率最大,则SKIPIF1<0.19.(2023·四川成都·四川省成都列五中学校考三模)SKIPIF1<0年7月SKIPIF1<0日第SKIPIF1<0届全国中学生生物学竞赛在浙江省萧山中学隆重举行.为做好本次考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了SKIPIF1<0名学生的成绩,经统计,这批学生的成绩全部介于SKIPIF1<0至SKIPIF1<0之间,将数据按照SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分成6组,制成了如图所示的频率分布直方图.
(1)求频率分布直方图中SKIPIF1<0的值,并估计这SKIPIF1<0名学生成绩的中位数;(2)在这SKIPIF1<0名学生中用分层抽样的方法从成绩在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的三组中抽取了SKIPIF1<0人,再从这SKIPIF1<0人中随机抽取3人,记SKIPIF1<0为3人中成绩在SKIPIF1<0的人数,求SKIPIF1<0的分布列和数学期望;20.(2023·宁夏银川·校考模拟预测)2023年9月23日至2023年10月8日,第19届亚运会将在中国杭州举行.杭州某中学高一年级举办了“亚运在我心”的知识竞赛,其中1班,2班,3班,4班报名人数如下:班号1234人数30402010该年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从预设的10个题目中随机抽取4个作答,至少答对3道的同学获得一份奖品,假设每位同学的作答情况相互独立.(1)求各班参加竞赛的人数;(2)2班的小张同学被抽中参加竞赛,若该同学在预设的10个题目中恰有3个答不对,记他答对的题目数为SKIPIF1<0,求SKIPIF1<0的分布列及数学期望.21.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,SKIPIF1<0表示选取的人中来自该中学的人数,求SKIPIF1<0的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?22.(2023·贵州贵阳·校联考三模)为了“让广大青少年充分认识到毒品的危害性,切实提升青少年识毒防毒拒毒意识”,我市组织开展青少年禁毒知识竞赛,团员小明每天自觉登录“禁毒知识竞赛APP”,参加各种学习活动,同时热衷于参与四人赛.每局四人赛是由网络随机匹配四人进行比赛,每题回答正确得20分,第1个达到100分的比赛者获得第1名,赢得该局比赛,该局比赛结束.每天的四人赛共有20局,前2局是有效局,根据得分情况获得相应名次,从而得到相应的学习积分,第1局获得第1名的得3分,获得第2、3名的得2分,获得第4名的得1分;第2局获得第1名的得2分,获得第2、3、4名的得1分;后18局是无效局,无论获得什么名次,均不能获得学习积分.经统计,小明每天在第1局四人赛中获得3分、2分、1分的概率分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在第2局四人赛中获得2分、1分的概率分别为SKIPIF1<0,SKIPIF1<0.(1)设小明每天获得的得分为X,求X的分布列和数学期望;(2)若小明每天赛完20局,设小明在每局四人赛中获得第1名从而赢得该局比赛的概率为SKIPIF1<0,每局是否赢得比赛相互独立,请问在每天的20局四人赛中,小明赢得多少局的比赛概率最大?23.(2023·江苏徐州·校考模拟预测)袋中放有形状、大小完全相同的4个黑球和4个白球.(1)从中依次摸3个球,摸后不放回,求在前两次摸球有黑球的条件下,第三次摸到白球的概率;(2)若每次摸一个球后,观察其颜色,再放回袋中.①求某人摸球5次,摸中3个黑球,且三个黑球不是连续摸中的概率;②若摸到黑球加1分,摸到白球减1分,求摸球多少次时,得分为4分的概率最大.24.(2023·吉林·统考模拟预测)随着消费者对环保、低碳和健康生活的追求不断加强,新能源汽车的市场需求也在不断增加.新能源汽车主要有混合动力汽车、纯电动汽车、燃料电池汽车等类型.某汽车企业生产的SKIPIF1<0型汽车,有混合动力和纯电动两种类型,总日产量达SKIPIF1<0台,其中有SKIPIF1<0台混合动力汽车,SKIPIF1<0台纯电动汽车.(1)若从中随机抽检SKIPIF1<0台汽车,用SKIPIF1<0表示抽检混合动力汽车的台数,分别就有放回抽检与不放回抽检,求SKIPIF1<0的分布列及数学期望;(2)若从每日生产的SKIPIF1<0台SKIPIF1<0型汽车中随机地抽取SKIPIF1<0台样本,用SKIPIF1<0表示样本中混合动力汽车台数,分别就有放回抽取和不放回抽取,用样本中的混合动力汽车台数的比例估计总体中混合动力汽车台数的比例,求误差不超过SKIPIF1<0的概率,并比较在相同的误差限制下,采用哪种抽取估计的结果更可靠.SKIPIF1<0二项分布概率值超几何分布概率值00.056310.0492910.187710.1825420.281570.2905130.250280.2613440.146000.1470150.058400.0539660.016220.0130770.003090.0020680.000390.0002090.000030.00001100.000000.00000总计1.000001.00000参考数据:(概率值精确到SKIPIF1<0)25.(2023·宁夏石嘴山·统考一模)人类命运共同体充分展现了中国的大国担当.在第75届联合国大会上中国承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用.为了解SKIPIF1<0两个品牌新能源电动汽车的使用满意度,在某市对购买SKIPIF1<0两个品牌的用户各随机抽取了100名进行问卷调查,记录他们对A、B两种品牌的满意度得分(满分100分),将数据分成6组:SKIPIF1<0,并整理得到如下频率分布直方图:
(1)请通过频率分布直方图分别估计A、B两种电动汽车使用满意度的平均得分,并判断哪种品牌电动汽车更受用户欢迎(同一组中的数据用该组中间的中点值作代表);(2)以样本频率估计概率,若使用满意度得分不低于70分说明用户对该品牌电动汽车较满意,现从该市使用B品牌的用户中随机抽取5个人,用SKIPIF1<0表示对B品牌较满意的人数,求SKIPIF1<0的分布列及数学期望.26.(2023·云南大理·统考模拟预测)目前,教师职业越来越受青睐,考取教师资格证成为不少人的就业规划之一.当前,中小学教师资格考试分笔试和面试两部分,笔试通过后才能进入面试环节.已知某市SKIPIF1<0年共有SKIPIF1<0名考生参加了中小学教师资格考试的笔试,笔试成绩SKIPIF1<0,只有笔试成绩高于SKIPIF1<0分的学生才能进入面试环节.(1)从报考中小学教师资格考试的考生中随机抽取SKIPIF1<0人,求这SKIPIF1<0人中至少有一人进入面试的概率;(2)现有甲、乙、丙SKIPIF1<0名学生进入了面试,且他们通过面试的概率分别为SKIPIF1<0,设这SKIPIF1<0名学生中通过面试的人数为SKIPIF1<0,求随机变量SKIPIF1<0的分布列和数学期望.参考数据:若SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.27.(2023·广西柳州·统考模拟预测)新高考改革后广西采用“3+1+2”高考模式,“3”指的是语文、数学、外语,这三门科目是必选的;“1”指的是要在物理、历史里选一门;“2”指考生要在生物学、化学、思想政治、地理4门中选择2门.(1)若按照“3+1+2”模式选科,求甲乙两个学生恰有四门学科相同的选法种数;(2)某教育部门为了调查学生语数外三科成绩,现从当地不同层次的学校中抽取高一学生5000名参加语数外的网络测试、满分450分,假设该次网络测试成绩服从正态分布SKIPIF1<0.①估计5000名学生中成绩介于120分到300分之间有多少人;②某校对外宣传“我校200人参与此次网络测试,有10名同学获得430分以上的高分”,请结合统计学知识分析上述宣传语的可信度.附:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.1.(2010•江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为SKIPIF1<0和SKIPIF1<0.则SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上三种情况都有可能2.(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线SKIPIF1<0为正态分布SKIPIF1<0的密度曲线)的点的个数的估计值为SKIPIF1<0SKIPIF1<0附“若SKIPIF1<0,则SKIPIF1<0.SKIPIF1<0.A.2386 B.2718 C.3413 D.47723.(2022•新高考Ⅱ)已知随机变量SKIPIF1<0服从正态分布SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0.4.(2017•新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:SKIPIF1<0.根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布SKIPIF1<0.(1)假设生产状态正常,记SKIPIF1<0表示一天内抽取的16个零件中其尺寸在SKIPIF1<0之外的零件数,求SKIPIF1<0及SKIPIF1<0的数学期望;(2)一天内抽检零件中,如果出现了尺寸在SKIPIF1<0之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0为抽取的第SKIPIF1<0个零件的尺寸,SKIPIF1<0,2,SKIPIF1<0,16.用样本平均数SKIPIF1<0作为SKIPIF1<0的估计值SKIPIF1<0,用样本标准差SKIPIF1<0作为SKIPIF1<0的估计值SKIPIF1<0,利用估计值判断是否需对当天的生产过程进行检查?剔除SKIPIF1<0之外的数据,用剩下的数据估计SKIPIF1<0和SKIPIF1<0(精确到SKIPIF1<0.附:若随机变量SKIPIF1<0服从正态分布SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.5.(2014•新课标Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数SKIPIF1<0和样本方差SKIPIF1<0(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值SKIPIF1<0服从正态分布SKIPIF1<0,其中SKIPIF1<0近似为样本平均数SKIPIF1<0,SKIPIF1<0近似为样本方差SKIPIF1<0.SKIPIF1<0利用该正态分布,求SKIPIF1<0;SKIPIF1<0某用户从该企业购买了100件这种产品,记SKIPIF1<0表示这100件产品中质量指标值位于区间SKIPIF1<0的产品件数,利用SKIPIF1<0的结果,求SKIPIF1<0.附:SKIPIF1<0.若SKIPIF1<0则SKIPIF1<0,SKIPIF1<0.6.(2023•全国)盒中有4个球,分别标有数字1、1、2、3,从中随机取2个球.(1)求取到2个标有数字1的球的概率;(2)设SKIPIF1<0为取出的2个球上的数字之和,求随机变量SKIPIF1<0的分布列及数学期望.7.(2019•天津)设甲、乙两位同学上学期间,每天SKIPIF1<0之前到校的概率均为SKIPIF1<0.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用SKIPIF1<0表示甲同学上学期间的三天中SKIPIF1<0之前到校的天数,求随机变量SKIPIF1<0的分布列和数学期望;(Ⅱ)设SKIPIF1<0为事件“上学期间的三天中,甲同学在SKIPIF1<0之前到校的天数比乙同学在SKIPIF1<0之前到校的天数恰好多2”,求事件SKIPIF1<0发生的概率.8.(2018•天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农产品品牌推广与营销合同
- 2024年度国际市场品牌推广合同
- 2024年度压路机行业培训与人才交流合同
- 软骨替代品市场发展现状调查及供需格局分析预测报告
- 2024年度0KV变电站工程安全防护合同
- 球拍用保护罩市场发展预测和趋势分析
- 2024年度建筑设计与监理合同
- 2024年度兰州土地使用权转让合同
- 合成材料制圣诞树市场发展现状调查及供需格局分析预测报告
- 2024年度品牌方与带货主播合作推广特定商品的合同范本
- 机械加工初步报价自动计算(含各种工时费)
- 《1.3 数据科学与大数据》课件(人教中图版)
- 中医儿科学 泄泻
- YY/T 0471.2-2004接触性创面敷料试验方法 第2部分:透气膜敷料水蒸气透过率
- SB/T 11137-2015代驾经营服务规范
- GB/T 2899-2017工业沉淀硫酸钡
- GB/T 18690.3-2002农业灌溉设备过滤器自动清洗网式过滤器
- PythonNumPy教学讲解课件
- 正高级会计师答辩面试资料
- 小学数学六年级《外方内圆和外圆内方》优秀教学设计
- 急性中毒现场急救
评论
0/150
提交评论