新高考数学一轮复习讲义第3章 §3.7 利用导数研究函数的零点(含解析)_第1页
新高考数学一轮复习讲义第3章 §3.7 利用导数研究函数的零点(含解析)_第2页
新高考数学一轮复习讲义第3章 §3.7 利用导数研究函数的零点(含解析)_第3页
新高考数学一轮复习讲义第3章 §3.7 利用导数研究函数的零点(含解析)_第4页
新高考数学一轮复习讲义第3章 §3.7 利用导数研究函数的零点(含解析)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§3.7利用导数研究函数的零点考试要求函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一利用函数性质研究函数的零点例1已知函数f(x)=xsinx-1.(1)讨论函数f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2)))上的单调性;(2)证明:函数y=f(x)在[0,π]上有两个零点.(1)解因为函数f(x)的定义域为R,f(-x)=-xsin(-x)-1=f(x),所以函数f(x)为偶函数,又f′(x)=sinx+xcosx,且当x∈eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))时,f′(x)≥0,所以函数f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))上单调递增,又函数f(x)为偶函数,所以f(x)在eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(π,2),0))上单调递减,综上,函数f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))上单调递增,在eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(π,2),0))上单调递减.(2)证明由(1)得,f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))上单调递增,又f(0)=-1<0,f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)))=eq\f(π,2)-1>0,所以f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2)))内有且只有一个零点,当x∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π))时,令g(x)=f′(x)=sinx+xcosx,则g′(x)=2cosx-xsinx,当x∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π))时,g′(x)<0恒成立,即g(x)在eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π))上单调递减,又geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)))=1>0,g(π)=-π<0,则存在m∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,2),π)),使得g(m)=0,且当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),m))时,g(x)>g(m)=0,即f′(x)>0,则f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),m))上单调递增,当x∈(m,π]时,有g(x)<g(m)=0,即f′(x)<0,则f(x)在(m,π]上单调递减,又f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)))=eq\f(π,2)-1>0,f(π)=-1<0,所以f(x)在(m,π]上有且只有一个零点,综上,函数y=f(x)在[0,π]上有2个零点.思维升华利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1(2023·芜湖模拟)已知函数f(x)=ax+(a-1)lnx+eq\f(1,x)-2,a∈R.(1)讨论f(x)的单调性;(2)若f(x)只有一个零点,求a的取值范围.解(1)函数f(x)的定义域为(0,+∞),f′(x)=a+eq\f(a-1,x)-eq\f(1,x2)=eq\f(ax-1x+1,x2),①若a≤0,则f′(x)<0,f(x)在(0,+∞)上单调递减;②若a>0,则当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))时,f′(x)<0,f(x)单调递减,当x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))时,f′(x)>0,f(x)单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))上单调递减,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))上单调递增.(2)若a≤0,f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))=eq\f(a,e)+1-a+e-2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)-1))a+e-1>0,f(1)=a-1<0.结合函数的单调性可知,f(x)有唯一零点.若a>0,因为函数在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))上单调递减,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))上单调递增,所以要使得函数有唯一零点,只需f(x)min=f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)))=1-(a-1)lna+a-2=(a-1)(1-lna)=0,解得a=1或a=e.综上,a≤0或a=1或a=e.题型二数形结合法研究函数的零点例2(2023·郑州质检)已知函数f(x)=ex-ax+2a,a∈R.(1)讨论函数f(x)的单调性;(2)求函数f(x)的零点个数.解(1)f(x)=ex-ax+2a,定义域为R,且f′(x)=ex-a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=0,则x=lna,当x<lna时,f′(x)<0,f(x)单调递减;当x>lna时,f′(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递增;当a>0时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)令f(x)=0,得ex=a(x-2),当a=0时,ex=a(x-2)无解,∴f(x)无零点,当a≠0时,eq\f(1,a)=eq\f(x-2,ex),令φ(x)=eq\f(x-2,ex),x∈R,∴φ′(x)=eq\f(3-x,ex),当x∈(-∞,3)时,φ′(x)>0;当x∈(3,+∞)时,φ′(x)<0,∴φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x)max=φ(3)=eq\f(1,e3),又x→+∞时,φ(x)→0,x→-∞时,φ(x)→-∞,∴φ(x)的图象如图所示.当eq\f(1,a)>eq\f(1,e3),即0<a<e3时,f(x)无零点;当eq\f(1,a)=eq\f(1,e3),即a=e3时,f(x)有一个零点;当0<eq\f(1,a)<eq\f(1,e3),即a>e3时,f(x)有两个零点;当eq\f(1,a)<0,即a<0时,f(x)有一个零点.综上所述,当a∈[0,e3)时,f(x)无零点;当a∈(-∞,0)∪{e3}时,f(x)有一个零点;当a∈(e3,+∞)时,f(x)有两个零点.思维升华含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2(2023·长沙模拟)已知函数f(x)=alnx-2eq\r(x).(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.解(1)当a=2时,f(x)=2lnx-2eq\r(x),该函数的定义域为(0,+∞),f′(x)=eq\f(2,x)-eq\f(1,\r(x)),又f(1)=-2,f′(1)=1,因此,曲线y=f(x)在x=1处的切线方程为y+2=x-1,即x-y-3=0.(2)①当a≤0时,f′(x)=eq\f(a,x)-eq\f(1,\r(x))<0,则f(x)在(0,+∞)上单调递减,不符合题意;②当a>0时,由f(x)=alnx-2eq\r(x)=0可得eq\f(2,a)=eq\f(lnx,\r(x)),令g(x)=eq\f(lnx,\r(x)),其中x>0,则直线y=eq\f(2,a)与曲线y=g(x)的图象在(0,16]内有两个交点,g′(x)=eq\f(\f(\r(x),x)-\f(lnx,2\r(x)),x)=eq\f(2-lnx,2x\r(x)),令g′(x)=0,可得x=e2<16,列表如下,x(0,e2)e2(e2,16]g′(x)+0-g(x)↗极大值↘所以函数g(x)在区间(0,16]上的极大值为g(e2)=eq\f(2,e),且g(16)=ln2,作出g(x)的图象如图所示.由图可知,当ln2≤eq\f(2,a)<eq\f(2,e),即e<a≤eq\f(2,ln2)时,直线y=eq\f(2,a)与曲线y=g(x)的图象在(0,16]内有两个交点,即f(x)在(0,16]上有两个零点,因此,实数a的取值范围是eq\b\lc\(\rc\](\a\vs4\al\co1(e,\f(2,ln2))).题型三构造函数法研究函数的零点例3(12分)(2022·新高考全国Ⅰ)已知函数f(x)=ex-ax和g(x)=ax-lnx有相同的最小值.(1)求a;[切入点:求f(x),g(x)的最小值](2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断ex-x=b,x-lnx=b的解的个数及解的关系]思维升华涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3(2021·全国甲卷)已知a>0且a≠1,函数f(x)=eq\f(xa,ax)(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=eq\f(x2,2x)(x>0),f′(x)=eq\f(x2-xln2,2x)(x>0),令f′(x)>0,则0<x<eq\f(2,ln2),此时函数f(x)单调递增,令f′(x)<0,则x>eq\f(2,ln2),此时函数f(x)单调递减,所以函数f(x)的单调递增区间为eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(2,ln2))),单调递减区间为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,ln2),+∞)).(2)曲线y=f(x)与直线y=1有且仅有两个交点,可转化为方程eq\f(xa,ax)=1(x>0)有两个不同的解,即方程eq\f(lnx,x)=eq\f(lna,a)有两个不同的解.设g(x)=eq\f(lnx,x)(x>0),则g′(x)=eq\f(1-lnx,x2)(x>0),令g′(x)=eq\f(1-lnx,x2)=0,得x=e,当0<x<e时,g′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,故g(x)max=g(e)=eq\f(1,e),且当x>e时,g(x)∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e))),又g(1)=0,所以0<eq\f(lna,a)<eq\f(1,e),所以a>1且a≠e,即a的取值范围为(1,e)∪(e,+∞).课时精练1.(2023·济南质检)已知函数f(x)=eq\f(lnx+ax,x),a∈R.(1)若a=0,求f(x)的最大值;(2)若0<a<1,求证:f(x)有且只有一个零点.(1)解若a=0,则f(x)=eq\f(lnx,x),其定义域为(0,+∞),∴f′(x)=eq\f(1-lnx,x2),由f′(x)=0,得x=e,∴当0<x<e时,f′(x)>0;当x>e时,f′(x)<0,∴f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴f(x)max=f(e)=eq\f(1,e).(2)证明f′(x)=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)+a))x-lnx-ax,x2)=eq\f(1-lnx,x2),由(1)知,f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∵0<a<1,∴当x>e时,f(x)=eq\f(lnx+ax,x)=a+eq\f(lnx,x)>0,故f(x)在(e,+∞)上无零点;当0<x<e时,f(x)=eq\f(lnx+ax,x),∵f

eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e)))=a-e<0,f(e)=a+eq\f(1,e)>0,且f(x)在(0,e)上单调递增,∴f(x)在(0,e)上有且只有一个零点,综上,f(x)有且只有一个零点.2.函数f(x)=ax+xlnx在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=a+lnx+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+xlnx,∴f′(x)=lnx,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1<m+1<0,即-2<m<-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)ex-eq\f(1,3)ax3+eq\f(1,3)a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.解(1)f(x)=(x-1)ex-eq\f(1,3)ax3+eq\f(1,3)a,则f′(x)=x(ex-ax).∵函数f(x)在[0,+∞)上单调递增,∴f′(x)=x(ex-ax)≥0在[0,+∞)上恒成立,则ex-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x>0时,则a≤eq\f(ex,x),构建g(x)=eq\f(ex,x)(x>0),则g′(x)=eq\f(x-1ex,x2)(x>0),令g′(x)>0,则x>1,令g′(x)<0,则0<x<1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)ex-eq\f(1,3)ax3+eq\f(1,3)a=(x-1)eq\b\lc\[\rc\](\a\vs4\al\co1(ex-\f(1,3)ax2+x+1)),令f(x)=0,则x=1或ex-eq\f(1,3)a(x2+x+1)=0,对于ex-eq\f(1,3)a(x2+x+1)=0,即eq\f(ex,x2+x+1)=eq\f(1,3)a,构建h(x)=eq\f(ex,x2+x+1),则h′(x)=eq\f(xx-1ex,x2+x+12),令h′(x)>0,则x>1或x<0,令h′(x)<0,则0<x<1,∴h(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,h(0)=1,h(1)=eq\f(e,3)且h(x)>0,当x∈R时恒成立,则当a=e时,eq\f(ex,x2+x+1)=eq\f(1,3)a有两个根x1=1,x2<0;当0<a<e时,eq\f(ex,x2+x+1)=eq\f(1,3)a只有一个根x3<0;当a≤0时,eq\f(ex,x2+x+1)=eq\f(1,3)a无根.综上所述,当a≤0时,f(x)只有一个零点;当0<a≤e时,f(x)有两个零点.4.(2022·全国乙卷)已知函数f(x)=ax-eq\f(1,x)-(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-eq\f(1,x)-lnx(x>0),所以f′(x)=eq\f(1,x2)-eq\f(1,x)=eq\f(1-x,x2).当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f(x)=ax-eq\f(1,x)-(a+1)lnx(x>0),得f′(x)=a+eq\f(1,x2)-eq\f(a+1,x)=eq\f(ax-1x-1,x2)(x>0).当a=0时,由(1)可知,f(x)不存在零点;当a<0时,f′(x)=eq\f(a\b\lc\(\rc\)(\a\vs4\al\co1(x-\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论