试卷分类汇编总汇不等式(组)_第1页
试卷分类汇编总汇不等式(组)_第2页
试卷分类汇编总汇不等式(组)_第3页
试卷分类汇编总汇不等式(组)_第4页
试卷分类汇编总汇不等式(组)_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

不等式(组)

一、选择题

'x+l>0

1.(2014♦广西贺州,第7题3分)不等式《,1的解集在数轴上表示正确的是()

1-^x>0

_______________________I3________________________

4---6JIJB.-卜,;;C.JIIL1>D.[ill]

-103-103-103-103

考点:在数轴上表示不等式的解集;解一元一次不等式组.

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴

上即可

'x+l〉0(、,

解答:

解:L1、八,解得I/,

l-^x>0x<3

3

故选:A.

点评:把每个不等式的解集在数轴上表示出来(>,》向右画;<,W向左画),数轴上的点把数轴分成

若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组

的解集.有几个就要几个.在表示解集时“2”,“W”要用实心圆点表示;“<”,“>”要用

空心圆点表示.

2.(2014•广西玉林市、防城港巾,第10题3分)在等腰中,AB-AC,其周长为20以,则16边的

取值范围是()

A.lc/n<AS<4c/nB.5cm<AB<10c/nC.4cm<AB<8c/nI).4cm<AB<10cm

考点:等腰三角形的性质;解-元一次不等式组;三角形三边关系.

分析:设/斤/白刘则除20-2x,根据三角形的三边关系即可得出结论.

解答:解:•.•在等腰△4比中,AB-AC,其周长为20的,

/.设AB=AC=xcm,贝ijBC=(20-2x)cm,

.'2x>20-2x

""20-2x>0,

解得5cm<x<\0cm.

故选笈

点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.

(9v—1

3.(2014年云南省,第3题3分)不等式组、的解集是()

[x+l>0

A.x>—B.-lWx<』C.x<—D.x2-1

222

考点:解一元一次不等式组.

分析:分别求出各不等式的解集,再求出其公共解集即可.

解答:解:(2x[个①,由①得,心>工,由②得,x2-l,

底+1>0②2

故此不等式组的解集为:x>k

2

故选A.

点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找

不到”的原则是解答此题的关键.

4.(2014年广东汕尾,第3题4分)若x>y,则下列式子中错误的是()

A.x-3>y-3B.—>X.C.x+3>_p+3D.-3x>-3y

33

分析:根据不等式的基本性质,进行选择即可.

解:尔根据不等式的性质1,可得*-3>y-3,故1正确;

8、根据不等式的性质2,可得包>2,故6正确;

33

61、根据不等式的性质1,可得户3>产3,故C正确;

D、根据不等式的性质3,可得-3x<-3y,故〃错误;故选〃

点评:本题考查了不等式的性质:

(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

5.(2014•毕节地区,第5题3分)下列叙述正确的是()

A.方差越大,说明数据就越稳定

B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变

c.不在同一直线上的三点确定■-个圆

。.两边及其一边的对角对应相等的两个三角形全等

考点:方差:不等式的性质;全等三角形的判定:确定圆的条件

分析:利用方差的意义、不等号的性质、全等三角形的判定及确定圆的

条件对每个选项逐一判断后即可确定正确的选项.

解答:解:A、方差越大,越不稳定,故选项错误;

8、在不等式的两边同时乘以或除以一个负数,不等号方向改变,

故选项错误;

C、正确;

。、两边及其夹角对应相等的两个三角形全等,故选项错误.

故选C.

点评:本题考查了方差的意义、不等号的性质、全等三角形的判定及确

定圆的条件,属于基本定理的应用,较为简单.

6.(2014•武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽

车数量(单位:

第1天第沃第3天第4天第沃第6天第沃郅天第沃第10天时间

由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()

A.9B.10C.12D.15

考点:折线统计图;用样本估计总体

分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超

过200辆的天数,求出其频率,再利用样本估计总体的思想即可求

解.

解答:解:山图可知,10天中在同一时段通过该路口的汽车数量超过200

辆的有4天,频率为:—=0.4,

10

所以估计一个月(30天)该时段通过该路口的汽车数量超过200

辆的天数为:30x0.4=12(天).

故选C.

点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从

统计图中得到必要的信息是解决问题的关键.

x>-1

7.(2014•邵阳,第6题3分)不等式组《ci的解集在数轴上表示正确的是()

2x-3<1

考点:在数轴上表示不等式的解集;解一元一次不等式组

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,

然后把不等式的解集表示在数轴上即可.

解答:

解:—1,,解得,,—1,

[2x-3<l[x<2

故选:B.

点评:把每个不等式的解集在数轴上表示出来(>,N向右画;V,S向左

画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示

解集的线的条数与不等式的个数一样,那么这段就是不等式组的解

集.有几个就要几个.在表示解集时“N”,"W'要用实心圆点表示;

">”要用空心圆点表示.

8.(2014•台湾,第22题3分)图为歌神《”的两种计费方案说明.若晓莉和朋友们打算在此A7V的一

间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们

至少有多少人在同一间包厢里欢唱?()

歌神KTV

包厢计费方案:

包厢每间每小时900元,

每人须另付入场费99元

人数计费方案:

每人欢唱3小时540元,

接着续唱每人每小时80元

A.6B.7C.8D.9

分析:设晓莉和朋友共有x人,分别计算选择包厢和选择人数的费用,然后根据选择包厢计费方案会比人

数计费方案便宜,列不等式求解.

解:设晓莉和朋友共有x人,

若选择包厢计费方案需付:900X6+99x元,

若选择人数计费方案需付:540Xx+(6-3)X80Xx=780x(元),

.•.900X6+99*<780x,

,5400633

好ATlZ倚r:x>681=7嬴

,至少有8人.

故选C.

点评:本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式

求解.

9.(2014•湘潭,第6题,3分)式子后万有意义,则x的取值范围是()

A.A>1B.x<lC.在1D.启1

考点:二次根式有意义的条件.

分析:根据二次根式的被开方数是非负数列出不等式x-120,通过解该不等式即可求得x的取值范围.

解答:解:根据题意,得X-1N0,

解得,*21.

故选C

点评:此题考查了二次根式的意义和性质.概念:式子〃(a20)叫二次根式.性质:二次根式中的被

开方数必须是非负数,否则二次根式无意义.

10.(2014•益阳,第5题,4分)一元二次方程*-2矛+加0总有实数根,则应应满足的条件是()

A.ni>lB.np\C.m<\D.必<1

考点:根的判别式.

分析:根据根的判别式,令△)(),建立关于勿的不等式,解答即可.

解答:解:•・•方程3-2田妹0总有实数根,

即4-4m2。,

:,-402-4,

/.mW1.

故选D.

点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:

(1)△>()0方程有两个不相等的实数根;

(2)△=00方程有两个相等的实数根;

(3)△<00方程没有实数根.

11.(2014•株洲,第2题,3分)x取下列各数中的哪个数时,二次根式G二号有意义()

A.-2B.0C.2D.4

考点:二次根式有意义的条件.

分析:二次根式的被开方数是非负数.

解答:解:依题意,得

x-320,

解得,x23.

观察选项,只有〃符合题意.

故选:D.

点评:考查了二次根式的意义和性质.概念:式子小”20)叫二次根式.性质:二次根式中的被开方

数必须是非负数,否则二次根式无意义.

12.(2014•株洲,第6题,3分)一元一次不等式组[的解集中,整数解的个数是()

x-5<0

44B.5C.6D.7

考点:一元一次不等式组的整数解.

分析:先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.

解答:解:•.•解不等式2a1>0得:x>-,

解不等式X-5W0得:W5,

...不等式组的解集是-<W5,

整数解为0,1,2,3,4,5,共6个,

故选C.

点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.

13.(2014•滨州,第6题3分)小方都是实数,且则下列不等式的变形正确的是()

A.a+x>b+xB.-a+l<-b+\C.3a<3bD.a>b

22

考点:不等式的性质

分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断

B,根据不等式的性质2,可判断C、D.

解答:解:4、不等式的两边都加或都减同一个整式,不等号的方向不

变,故A错误;

8、不等式的两边都乘或除以同一个负数,不等号的方向改变,

故8错误;

C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,

故C正确;

。、不等式的两边都乘以或除以同一个正数,不等号的方向不变,

故。错误;

故选:C.

点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负

数,不等号的方向改变.

f1、

—x+1^0

14.(2014•德州,第6题3分)不等式组{3的解集在数轴上可表示为()

2-x》0

A.।I,B.।、C.1।---1—>D.]।J,

-302^302^-3021>

考点:在数轴上表示不等式的解集;解一元一次不等式组

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴

上即可.

f>-3

解不等式组得:Jx二,再分别表示在数轴上即可得解.

lx<2

解答:区x+i>orx>-3

解:3解得11,

2-x>0

故选:D.

点评:本题考查了在数周表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,,向右画;<,

W向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式

的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“学","W”要用

实心圆点表示;“<”,要用空心圆点表示.

'l+x〈a

15.(2014年山东泰安,第15题3分)若不等式细x+91]>x+l_]有解,则实数a的取值范围是()

A.a<-36B.aW-36C.a>-36D.a2-36

分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,

据此即可列不等式求得a的范围.

…①

解:'x+9、x+10,解①得:xVa-l,解②得:xN-37,

尸+1号-1…⑵

贝解得:a>-36.故选C.

点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等

式的解,若较小的数、〈较大的数,那么解集为x介于两数之间.

二.填空题

1.(2014•广东,第15题4分)不等式组J、的解集是l<x<4

4x-l>x+2

考点:解一元一次不等式组.

专题:计算题.

分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可二

解答:.⑵<8①

解:_>

4x-l>x+2②

由①得:x<4:由②得:尤>1,

则不等式组的解集为1VXV4.

故答案为:l<x<4.

点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.

-3

2.(2014•新疆,第10题5分)不等式组{3的解集是.

1-2x>5

考点:解一元一次不等式组

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.

解答:L>-3…①

解:,3,

l-2x>5-0

解①得:-5,

解②得:x<-2,

则不等式组的解集是:-5<x<-2.

故答案是:-5Vx<-2.

点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,

若x>较小的数、〈较大的数,那么解集为x介于两数之间.

3.(2014•温州,第13题5分)不等式3x-2>4的解是尤>2.

考点:解一元一次不等式.

分析:先移项,再合并同类项,把x的系数化为1即可.

解答:解:移项得,3*>4+2,

合并同类项得,3x>6,

把x的系数化为1得,x>2.

故答案为:x>2.

点评:本题考查的是解一元一次不等式,熟知解一元•次不等式的基本步骤是解答此题的关键.

’1-2x_4-3x、x-2

4.(2014•毕节地区,第17题5分)不等式组,36,2的解集为.

2x-743(x-1)

考点:解一元一次不等式组

分析:分别求出各不等式的解集,再求出其公共解集即可.

解答:(1二红-土包》£二①

解:36,23,

2x-7<3(x-1)②

由①得,x<\,

由②得,x>-4,

故此不等式组的解集为:-4SE1.

故答案为:-49W1.

点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小

大中间找;大大小小找不到'’的原则是解答此题的关键.

5.(2014•武汉,第18题6分)已知直线产2x-b经过点(1,-1),求关于x的不等式2x-匕力的解集.

考点:一次函数与一元一次不等式

分析:把点(1,-1)代入直线产2x-b得到b的值,再解不等式.

解答:解:把点(1,-1)代入直线产2x-b得,

-1=2-b,

解得,b=3.

函数解析式为y=2x-3.

解2x-3K)得,x>^.

2

点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.

6.(2014•四川自贡,第12题4分)不等式组I、的解集是1〈谷.

[x-l>0

考点:解一元一次不等式组

分析:分别求出各不等式的解集,再求出其公共解集即可.

解答:(~①〜

解:2x、+3二>0,由①得,xW,由②…得,x>l,

x-l>0②

故此不等式组的解集为:1<W.

故答案为:1〈点.

点评:本题考查的是解一元一次不等式组,熟知''同大取大;同小取小;大小小大中间找;大大小小找不

至『’的原则是解答此题的关键.

7.(2014•浙江金华,第11题4分)写出一个解为x21的一元一次不等式▲.

【答案】x-l>0(答案不唯一).

【解析】

试题分析:根据不等式的性质,从应1逆推即可得到一元一次不等式:x>l^x-l>0(答案不唯一).

考点:1.开放型;2.不等式的解集.

8.(2014•株洲,第16题,3分)如果函数片(a-1)f+3kW殳的图象经过平面直角坐标系的四个象

a-1

限,那么a的取值范围是a<-5.

考点:抛物线与x轴的交点

分析:函数图象经过四个象限,需满足3个条件:

(/)函数是二次函数;

(77)二次函数与x轴有两个交点;

(///)二次函数与y轴的正半轴相交.

解答:解:函数图象经过四个象限,需满足3个条件:

(Z)函数是二次函数.因此a-1/0,即a#l①

(//)二次函数与x轴有两个交点.因此^=9-4«-1)-5^-4&-11>0,解得a<-皂②

a-l4

(IID二次函数与y轴的iE半轴相交.因此上电>0,解得a>l或a<-5③

a-1

综合①②③式,可得:a<-5.

故答案为:a<-5.

点评:本题考查二次函数的图象与性质、二次函数与x轴的交点、二次函数与y轴交点等知识点,解题关

键是确定“函数图象经过四个象限”所满足的条件.

9.(2014年江苏南京,第15题,2分)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160ca,

某厂家生产符合该规定的行李箱,已知行李箱的高为30函,长与宽的比为3:2,则该行李箱的长的最

大值为cm.

考点:一元一次不等式的应用。

分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160.,可得出不等式,解出即可.

解答:设长为3必宽为2x,由题意,得:5户30W160,

解得:xW26,故行李箱的长的最大值为78.故答案为:78cm.

点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.

10.(2014年江苏南京,第16题,2分)已知二次函数尸中,函数y与自变量x的部分对应值

如表:

X…-10123…

y•••105212…

则当y<5时,x的取值范围是,

考点:二次函数与不等式

分析:根据表格数据,利用二次函数的对称性判断出产4时,尸5,然后写出y<5时;x的取值范围

即可.

解答:由表可知,二次函数的对称轴为直线尸2,所以,尸4时,尸5,

所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.

点评:本题考查了二次函数与不等式,观察图表得到尸5的另一个x的值是解题的关键.

三.解答题

1.(2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/

吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处

理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有

变化,就要多支付垃圾处理费8800元.

(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理

量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.

分析:(1)设该企业2013年处理的餐厨垃圾“吨,建筑垃圾了吨,根据等量关系式:餐厨垃圾处理费

25元/吨X餐厨垃圾吨数+建筑垃圾处理费16元/吨X建筑垃圾吨数=总费用,列方程.

(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出

%的范围,由于a的值随x的增大而增大,所以当产60时,a值最小,代入求解.

解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得

'25x+16尸5200

'100x+30y=5200+8800,

解得产°.

ly=200

答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;

(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题

意得,F丁我,解得G60.

1y<3x

a=100户30尸100户30(240-x)=70^+7200,

由于a的值随x的增大而增大,所以当后60时,a值最小,

最小值=70X60+7200=11400(元).

答:2014年该企业最少需要支付这两种垃圾处理费共11400元.

点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决

本题的关键;

2x—12^,—5

2.(2014•珠海,第12题6分)解不等式组:、.

-x+l>2

考点:解一元一次不等式组.

分析:分别求出各不等式的解集,再求出其公共解集即可.

解答:(2x-l>-5①

解:I、…,由①得,x>-2,由②得,后-1,

-x+l>2②

故此不等式组的解集为:-2<A-1.

点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法

则是解答此题的关健.

3.(2014•珠海,第20题9分)阅读下列材料:

解答“已知x-尸2,且x>l,y<0,试确定9y的取值范围”有如下解法:

解片2,户户2

又•.3>]VyF2>l.:.y>-1.

又;y<0,-l<y<0.…①

同理得:l<x<2.…②

由①+②得-1+1<产x<0+2

,广y的取值范围是0<户了<2

请按照上述方法,完成下列问题:

(1)已知x-尸3,且x>2,y<l,则户y的取值范围是lVky<5.

(2)已知y>l,x<-\,若x-片a成立,求x+y的取值范围(结果用含a的式子表示).

考点:一元一次不等式组的应用.

专题:阅读型.

分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;

(2)理解解题过程,按照解题思路求解.

解答:解:⑴尸3,

x=y+3,

又O2,

.,.JH-3>2,

:.y>-1.

-l<y<l,…①

同理得:2cx<4,…②

由①+②得-1+2<y+x<l+4

.••x+y的取值范围是l<A+y<5;

(2)".,x-y=a,

x^y+a,

又-1,

y+a<-L

y<-a-1,

又">1,

/.l<y<-a~1,…①

同理得:…②

由①+②得l+a+l<^-x<-a-1+(-1),

二产y的取值范围是a+2<Ky<-a-2.

点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料•,理解解题过程,难度一般.

4.(2014•广西玉林市、防城港巾,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓

解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,

估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:

(1)从今年年初起每年新增电动车数量最多是多少万辆?

(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)

考点:一元二次方程的应用;一元一次不等式的应用.

分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不

等式求出即可;

(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.

解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,

由题意可得出:今年将报废电动车:10X10%=l(万辆),

;.[(10-1)+x](1-10%)+xW11.9,

解得:A<2.

答:从今年年初起每年新增电动车数量最多是2万辆;

(2)•••今年年底电动车拥有量为:(10-1)+产11(万辆),

明年年底电动车拥有量为:11.9万辆,

设今年年底到明年年底电动车拥有量的年增长率是必则11(1+y)=11.9,

解得:10.082=8.2%.

答:今年年底到明年年底电动车拥有量的年增长率是8.2%.

点评:此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数

量是解题关键.

5.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单

价%(元/台)与采购数量无(台)满足y=-20%+1500(0<zW20,小为整数);冰箱的采购单价再(元

/台)与采购数量加(台)满足%=-10Z2+1300(0<EW20,及为整数).

(D经商家与厂家协商,采购空调的数量不少于冰箱数量的工1,且空调采购单价不低于1200元,问该商

9

家共有几种进货方案?

(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,

同采购空调多少台时总利润最大?并求最大利润.

考点:二次函数的应用;一元一次不等式组的应用.

分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20-x)台,然后根据数量和单价列出不

等式组,求解得到x的取值范围,再根据空调分数是正整数确定进货方案;

(2)设总利润为1元,根据总利润等于空调和冰箱的利润之和整理得到1与x的函数关系式并整理成顶

点式形式,然后根据二次函数的增减性求出最大值即可.

解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20-x)台,

X7(20-x)①

由题意得,{下,

-20x+1500》1200②

解不等式①得,

解不等式②得,xW15,

所以,不等式组的解集是11W启15,

为正整数,

.♦.X可取的值为11、12、13、14、15,

所以,该商家共有5种进货方案;

(2)设总利润为/元,

y2=-10^+1300=-10(20-x)+1300=10^+1100,

则聆(1760-%)为+(1700-鹿)氏2,

=1760%-(-20卢1500)户(1700-10%-1100)(20-x),

=1760户20*-1500A+10/-800A+12000,

=30y-540户12000,

=30(x-9)、9570,

当x>9时,/随x的增大而增大,

:HWA<15,

当尸15时,/心火位=30(15-9)2+9570=10650(元),

答:采购空调15台时,获得总利润最大,最大利润值为10650元.

点评:本题考查了二次函数的应用,一元一次不等式组的应用,(D关键在于确定出两个不等关系,(2)

难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.

6.(2014年天津市,第19题8分)解不等式组[及-1>-1'①

2x+l<3,②

请结合题意填空,完成本题的解答:

(1)解不等式①,得;

(II)解不等式②,得;

(III)把不等式①和②的解集在数轴上表示出来:

—J—I—I——I——I—I——-»

-3-2-10123

(IV)原不等式组的解集为.

考点:解一元一次不等式组;在数轴上表示不等式的解集.

分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.

解答:解:(7)解不等式①,得

UD解不等式②得,启1,

(HD在数轴上表示为:

--------J1--------->

-3-2-0123^;

(7/W故此不等式的解集为:-IWxWl.

故答案分别为:心-1,运1,-1W启1.

点评:本题考查的是解一元一次不等式组,熟知''同大取大;同小取小;大小小大中间找;大大小小找

不到”的原则是解答此题的关键.

7.(2014•舟山,第21题8分)某汽车专卖店销售46两种型号的新能源汽车.上周售出1辆{型车和3

辆6型车,销售额为96万元;本周已售出2辆1型车和1辆6型车,销售额为62万元.

(1)求每辆/型车和6型车的售价各为多少元.

(2)甲公司拟向该店购买48两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万

元.则有哪几种购车方案?

考点:一元一次不等式组的应用;二元一次方程组的应用

分析:(1)每辆力型车和9型车的售价分别是x万元、y万元.则等量关系为:1辆/型车和3辆夕型车,

销售额为96万元,2辆4型车和1辆6型车,销售额为62万元;

(2)设购买4型车a辆,则购买8型车(6-a)辆,则根据“购买46两种型号的新能源汽车共

6辆,购车费不少于130万元,且不超过140万元”得到不等式组.

解答:解:(1)每辆4型车和6型车的售价分别是x万元、y万元.则

x+3y=96

2x+y=62

解得产18.

ly=26

答:每辆/型车的售价为18万元,每辆8型车的售价为26万元;

(2)设购买/型车a辆,则购买6型车(6-a)辆,则依题意得

'8a+26(6-a)>130

\18a+26(6-a)<140'

解得2WaW3.

是正整数,

:.所2或a=3.

,共有两种方案:

方案一:购买2辆1型车和4辆,型车;

方案二:购买3辆4型车和3辆4型车.

点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到

关键描述语,进而找到所求的量的等量关系.

8.(2014年广东汕尾,第23题11分)某校为美化校园,计划对面积为1800方的区域进行绿化,安排甲、

乙两个工程队完成.己知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完

成面积为400方区域的绿化时,甲队比乙队少用4天.

(1)求甲、乙两工程队每天能完成绿化的面积分别是多少疡?

(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8

万元,至少应安排甲队工作多少天?

分析:(1)设乙工程队每天能完成绿化的面积是苏,根据在独立完成面积为400层区域的绿化时,甲队比

乙队少用4天,列出方程,求解即可;

(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.

解:(1)设乙工程队每天能完成绿化的面积是x泊根据题意得:驷-您=4,

x2x

解得:下50经检验尸50是原方程的解,

则甲工程队每天能完成绿化的面积是50X2=1003),

答:甲、乙两工程队每天能完成绿化的面积分别是100序、50届

(2)设至少应安排甲队工作x天,根据题意得:

MZFI、,八

0c.4.x+,-1-8-0-0-----l-O-O-x-X0.2c5u<ic8,解得:x210,

50

答:至少应安排甲队工作10天.

点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方

程时要注意检验.

9.(2014•襄阳,第24题10分)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,

要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价

中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购

买价及成活率如表:

储1种购买价(元/棵)成活率

甲2090%

乙3295%

设购买甲种树苗x棵,承包商获得的利润为7元.请根据以上信息解答下列问题:

(1)设y与x之间的函数关系式,并写出自变量取值范围;

(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?

(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率

达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?

最大利润是多少?

考点:•次函数的应用;一元一次不等式组的应用

分析:(1)根据利润等于价格减去成本,可得答案;

(2)根据利润不低于中标价16%可得不等式,根据解不等式,可得答案;

(3)分类讨论,成活率不低于93%且低于94%时,成活率达到94%以上(含94%),可

得相应的最大值,根据有理数的比较,可得答案.

解答:解:(1)尸260000-[20肝32(6000-x)+8X6000-12^+20000,

自变量的取值范围是:0<x<3000;

(2)由题意,得12^+200002260000X16%,

解得:x-1800,

A18003000,

购买甲种树苗不少于1800棵且不多于3000棵;

(3)①若成活率不低于93%且低于94%时,由题意得

‘0.9x+0.95(6000-x)>0.93X6000

10.9x+0.95(6000-x)<0.94X6000'

解得1200<A<2400

在尸12x+20000中,

V12>0,

随x的增大而增大,

...当年2400时,

人=48800,

②若成活率达到94%以上(含94%),则0.9A+0.95(6000-x)20.94X6000,

解得:XW1200,

由题意得尸12^20000+260000X6%=12炉■BSGOO,

V12>0,

随x的增大而增大,

.•♦当A=1200I时,y城大值=5000,

综上所述,50000>48800

,购买甲种树苗1200棵,一种树苗4800棵,可获得最大利润,最大利润是50000元.

点评:本题考查了一次函数的应用,利用了价格减成本等于利润,分类讨论是解题关键.

10.(2014•孝感,第23题10分)我市孽弗喜获丰收,某生产基地收获孽葬40吨.经市场调查,可采用

批发、零售、加工销售三种销售方式,这三种销售方式每吨孳算的利润如下表:

销售方式批发零售加工销售

利润(百元/吨)122230

设按计划全部售出后的总利润为y百元,其中批发量为*吨,且加工销售量为15吨.

(1)求y与x之间的函数关系式;

(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完孳算后获得的最大利润.

考点:一次函数的应用;-元一次不等式组的应用.

分析:(1)根据总利润=批发的利润+零售的利润+加工销售的利润就可以得出结论;

(2)山(1)的解析式,根据零售量不超过批发量的4倍,建立不等式求出x的取值

范围,由一次函数的性质就可以求出结论.

解答:解:(1)依题意可知零售量为(25-%)吨,则

片12户22(25-x)+30X15

:.y=-10A+1000;

'x>0

(2)依题意有:,25-x>0,

25-x<4x

解得:5WxW25.

■:k=-10<0,

随x的增大而减小.

.,.当:5时,y有最大值,且y.大=950(百元).

,最大利润为950百元.

点评:本题考查了总利润=批发的利润+零售的利润+加工销售的利润的运用,一元一次不等

式组的运用,一次函数的性质的运用,解答时求出•次函数的解析式是关键.

11.(2014•邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地质和单色地砖共100块,共花

费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.

(1)两种型号的地砖各采购了多少块?

(2)如果厨房也要铺设这两种型号的地砖共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论