版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年湖南省株洲市茶陵县茶陵三中高三5月质量检测试题巩固卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.32.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则()A. B. C. D.3.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.设等差数列的前项和为,若,,则()A.21 B.22 C.11 D.125.已知变量,满足不等式组,则的最小值为()A. B. C. D.6.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.97.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.328.若函数有两个极值点,则实数的取值范围是()A. B. C. D.9.设分别为的三边的中点,则()A. B. C. D.10.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.11.已知平面向量,满足,且,则与的夹角为()A. B. C. D.12.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.5二、填空题:本题共4小题,每小题5分,共20分。13.如果复数满足,那么______(为虚数单位).14.已知非零向量的夹角为,且,则______.15.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.16.已知为偶函数,当时,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、、的表达式;(2)试确定使用哪种运输工具总费用最省.18.(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.(1)若当时,,求此时的值;(2)设,且.(i)试将表示为的函数,并求出的取值范围;(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|⋅|PB|的值.20.(12分)已知点、分别在轴、轴上运动,,.(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,,求的取值范围.21.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.22.(10分)已知函数的最大值为2.(Ⅰ)求函数在上的单调递减区间;(Ⅱ)中,,角所对的边分别是,且,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.2.D【解析】
由半圆面积之比,可求出两个直角边的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知,以为直径的半圆面积,以为直径的半圆面积,则,即.由,得,所以.故选:D.本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.3.A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.本题考查了常见几何体的三视图和体积计算,属于基础题.4.A【解析】
由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以,即,解得.故选:A.本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.5.B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.6.A【解析】
先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.7.B【解析】
设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.8.A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.9.B【解析】
根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B本题考查了向量加法的线性运算,属于基础题.10.B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.11.C【解析】
根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.12.D【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.14.1【解析】
由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,,可得:,
可得,
解得,
故答案为:1.本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.15.【解析】
先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.16.【解析】
由偶函数的性质直接求解即可【详解】.故答案为本题考查函数的奇偶性,对数函数的运算,考查运算求解能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),,.(2)当时,此时选择火车运输费最省;当时,此时选择飞机运输费用最省;当时,此时选择火车或飞机运输费用最省.【解析】
(1)将运费和损耗费相加得出总费用的表达式.(2)作差比较、的大小关系得出结论.【详解】(1),,.(2),故,恒成立,故只需比较与的大小关系即可,令,故当,即时,,即,此时选择火车运输费最省,当,即时,,即,此时选择飞机运输费用最省.当,即时,,,此时选择火车或飞机运输费用最省.本题考查了常见函数的模型,考查了分类讨论的思想,属于基础题.18.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,两式相加可得所求解析式.(ii)在中,由余弦定理可得,根据的最大值不小于可得关于的不等式,解不等式可得所求.【详解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求关系式为,.(ii)当观赏角度的最大时,取得最小值.在中,由余弦定理可得,因为的最大值不小于,所以,解得,经验证知,所以.即两处喷泉间距离的最小值为.本题考查解三角形在实际中的应用,解题时要注意把条件转化为三角形的边或角,然后借助正余弦定理进行求解.解题时要注意三角形边角关系的运用,同时还要注意所得结果要符合实际意义.19.(1)直线的普通方程,圆的直角坐标方程:.(2)【解析】
(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)将直线的参数方程代入圆的直角坐标方程,利用一元二次方程根和系数关系式即可求解.【详解】(1)直线l的参数方程为(t为参数),转换为直角坐标方程为x+y﹣3=0.圆C的极坐标方程为ρ2﹣4ρcosθ=3,转换为直角坐标方程为x2+y2﹣4x﹣3=0.(2)把直线l的参数方程为(t为参数),代入圆的直角坐标方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.20.(1)(2)【解析】
(1)设坐标后根据向量的坐标运算即可得到轨迹方程.(2)联立直线和椭圆方程,用坐标表示出,得到,所以,代入韦达定理即可求解.【详解】(1)设,,则,设,由得.又由于,化简得的轨迹的方程为.(2)设直线的方程为,与的方程联立,消去得,,设,,则,,由已知,,则,故直线.,令,则,由于,,.所以,的取值范围为.此题考查轨迹问题,椭圆和直线相交,注意坐标表示向量进行转化的处理技巧,属于较难题目.21.(1)(2)【解析】
(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,也就是在单调递增,所以.当即时,,不符合;当即时,,符合当即时,根据零点存在定理,,使,有时,,在单调递减,时,,在单调递增,成立,故只需即可,有,得,符合综上得,,实数的最小值为本小题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年空调压缩机行业市场发展分析与发展趋势及投资前景预测报告
- 2024-2030年私服行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年磷酸镁水泥行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年碳热塑性塑料行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年矿泉水行业市场发展分析及发展前景与投资研究报告
- 2024-2030年男科医院行业市场深度分析及发展策略研究报告
- 2024-2030年甲基丁酸产业市场深度调研及发展趋势与投资前景研究报告
- 2024-2030年玻璃纤维硬板绝缘行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年环保行业市场发展分析及发展前景与投资机会研究报告
- 2024-2030年独臂强盗行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 国际法与国际关系的法律与人权维度
- 危化品管理的案例分析与总结
- 福特F-150猛禽说明书
- 新课程关键词
- 2024能源革命保障能源安全
- 2024年成都交通投资集团招聘笔试参考题库含答案解析
- 风景园林工程师答辩(中级)文字版
- 2023-2024学年四川省成都市青羊区树德实验中学八年级上册12月月考数学试题(含解析)
- 外研社(一年级起点)小学英语四年级上册单词(带音标、词性)
- 电力设备行业背景分析报告
- 基于大数据技术的老年人慢性病风险预测模型构建与应用
评论
0/150
提交评论