版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年湖北省八校(鄂南高中、华师一附中高三5月模拟考试自选试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个2.已知复数满足,其中为虚数单位,则().A. B. C. D.3.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度4.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.5.已知函数,则下列判断错误的是()A.的最小正周期为 B.的值域为C.的图象关于直线对称 D.的图象关于点对称6.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则,.)A.4.56% B.13.59% C.27.18% D.31.74%7.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种 B.27种 C.37种 D.47种8.若直线经过抛物线的焦点,则()A. B. C.2 D.9.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.10.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.11.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.12.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(为虚数单位)为纯虚数,则实数的值为_____.14.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.15.已知函数,则________;满足的的取值范围为________.16.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.18.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,以所在的直线分别为轴,轴,建立平面直角坐标系,如图所示,山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度.19.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.20.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.21.(12分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.22.(10分)在ABC中,角A,B,C的对边分别为a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.2.A【解析】
先化简求出,即可求得答案.【详解】因为,所以所以故选:A此题考查复数的基本运算,注意计算的准确度,属于简单题目.3.B【解析】
分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到再将得到的图象向左平移个单位长度得到故选B.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.4.B【解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.5.D【解析】
先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.6.B【解析】试题分析:由题意故选B.考点:正态分布7.C【解析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C本题考查古典概型,考查补集思想的应用,属于基础题.8.B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.本题考查了抛物线的焦点,属于简单题.9.D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.10.C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.11.D【解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..12.A【解析】
由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.考查集合并集运算,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用复数的乘法求解再根据纯虚数的定义求解即可.【详解】解:复数为纯虚数,解得.故答案为:.本题主要考查了根据复数为纯虚数求解参数的问题,属于基础题.14.【解析】
作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,,则单调递增,当时,,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意.综上:的范围是,故答案为:,本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.15.【解析】
首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,∵,∴当时,满足题意,∴;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.本题考查分段函数的性质的应用,分类讨论思想,属于基础题.16.【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.另一个特征值为,对应的一个特征向量【解析】
根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【详解】矩阵的特征多项式为:,是方程的一个根,,解得,即方程即,,可得另一个特征值为:,设对应的一个特征向量为:则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.18.(1)当时,公路的长度最短为千米;(2)(千米).【解析】
(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值,所以,此时.故当时,公路的长度最短,最短长度为千米.(2)在中,,,所以,所以,根据正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.19.(1)见解析;(2)【解析】
(1)取中点,中点,连接,,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,,.设交于,则为的中点,连接.设,则,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,,,,,,,,设平面的法向量为,∴,令得.设平面的法向量为,∴,令得,∴,∴二面角的余弦值为.本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20.(1)(2)【解析】
(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景区租车方案
- 民间借贷中诉讼时效的起算问题研究
- 村级方案的格式
- 2024年四川省眉山市中考理综物理试题含答案
- 福建行政职业能力测验真题2015年
- 苏教版思想品德五年级下册全册教案
- 湖北公务员面试模拟33
- 2009年1月17日四川省招警面试真题
- 福建公务员面试模拟49
- 辽宁公务员面试模拟47
- Unit4《This is my friend》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 2025届单一概念材料作文“被讨厌的勇气”审题指导高考语文写作技巧实战分析与素材运用
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 摩托车个人租车协议书模板
- 历年中国农业发展银行秋季校园招聘笔试真题及答案
- 2024年统编版新教材语文小学一年级上册第二单元测试题(有答案)
- 2023-2024学年广东省深圳市福田区北师大版三年级上册期中考试数学试卷(原卷版)
- 2024年山东省高考物理试卷(真题+答案)
- 汉语词汇与文化智慧树知到期末考试答案章节答案2024年浙江师范大学
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
评论
0/150
提交评论