版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年河南省洛阳市重点中学高三5月第四次模考数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.32.点为的三条中线的交点,且,,则的值为()A. B. C. D.3.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或54.下列函数中,图象关于轴对称的为()A. B.,C. D.5.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有()A.12种 B.24种 C.36种 D.48种7.设为锐角,若,则的值为()A. B. C. D.8.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.09.已知满足,,,则在上的投影为()A. B. C. D.210.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.11.若,,,则下列结论正确的是()A. B. C. D.12.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.14.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.15.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.16.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.18.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.19.(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.20.(12分)已知正实数满足.(1)求的最小值.(2)证明:21.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.22.(10分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,,的斜率分别为,,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A本题考查了根据垂径定理求解直线中参数的方法,属于基础题.2.B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.3.B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.4.D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.5.A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.6.C【解析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.D【解析】
用诱导公式和二倍角公式计算.【详解】.故选:D.本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.8.C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.9.A【解析】
根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A本题考查向量的投影,属于基础题.10.B【解析】
利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.11.D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.12.C【解析】
根据抛物线定义,可得,,又,所以,所以,设,则,则,所以,所以直线的斜率.故选C.二、填空题:本题共4小题,每小题5分,共20分。13.130.15.【解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.14.【解析】
首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,,解得.故答案为.本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.15.【解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【详解】因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.16.①③④【解析】
对于①中,当点与点重合,与点重合时,可判断①正确;当点点与点重合,与直线所成的角最小为,可判定②不正确;根据平面将四面体可分成两个底面均为平面,高之和为的棱锥,可判定③正确;四面体在上下两个底面和在四个侧面上的投影,均为定值,可判定④正确.【详解】对于①中,当点与点重合,与点重合时,,所以①正确;对于②中,当点点与点重合,与直线所成的角最小,此时两异面直线的夹角为,所以②不正确;对于③中,设平面两条对角线交点为,可得平面,平面将四面体可分成两个底面均为平面,高之和为的棱锥,所以四面体的体积一定是定值,所以③正确;对于④中,四面体在上下两个底面上的投影是对角线互相垂直且对角线长度均为1的四边形,其面积为定义,四面体在四个侧面上的投影,均为上底为,下底和高均为1的梯形,其面积为定值,故四面体在该正方体六个面上的正投影的面积的和为定值,所以④正确.故答案为:①③④.本题主要考查了以空间几何体的结构特征为载体的谜题的真假判定及应用,其中解答中涉及到棱柱的集合特征,异面直线的关系和椎体的体积,以及投影的综合应用,着重考查了推理与论证能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)①当时,在单调递增,②当时,单调递增区间为,,单调递减区间为(2)证明见解析【解析】
(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),①当时,恒成立,则在单调递增②当时,令得,解得,又,∴∴当时,,单调递增;当时,,单调递减;当时,,单调递增.(2)依题意得,,则由(1)得,在单调递增,在上单调递减,在上单调递增∴若方程有三个实数解,则法一:双偏移法设,则∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递减,∴,即设,∴在上单调递增,∴,∴,即∵,∴,其中,∵在上单调递增,∴,即∴.法二:直接证明法∵,,在上单调递增,∴要证,即证设,则∴在上单调递减,在上单调递增∴,∴,即(注意:若没有证明,扣3分)关于的证明:(1)且时,(需要证明),其中∴∴∴(2)∵,∴∴,即∵,,∴,则∴本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.18.(1);(2)从而的分布列为012;(3).【解析】
(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,,,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的概率为,所以,所以事件“”的概率为.19.(1)(2)的递减区间为和【解析】
(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,,故的递减区间为和.本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.20.(1);(2)见解析【解析】
(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为,所以因为,所以(当且仅当,即时等号成立),所以(2)证明:因为,所以故(当且仅当时,等号成立)本题考查了基本不等式的应用,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 板块构造学说
- 患者就诊排队管理制度
- 算法设计与分析 课件 3.4-递归 - 典型应用 - 整数划分
- 2024年山南道路客运从业资格证考试模拟试题
- 2024年商洛客运从业资格证到期换证考试
- 2024年吉林客运模拟考试
- 2024年长沙客运从业资格证考试考什么
- 2024年拉萨客运驾驶员试题答案
- 人教部编版二年级语文上册《语文园地二》精美课件
- 吉首大学《风景园林花卉学》2021-2022学年第一学期期末试卷
- 中考数学复习《圆》专题训练-附带有答案
- 宾馆治安管理制度范文
- 驻场工作人员管理办法
- 管理培训教材-NPI新产品导入
- 《交换机基础原理》培训课件
- 质量保证体系评价-评价表(ASES-ver.1.6)
- 消防安全-情系你我他
- 短视频的拍摄与剪辑
- 东北林业大学电子电工学21-22年阶段一考试试卷-答案
- 产品设计-浅谈智能蓝牙音响的外观创新设计
- 江苏省南京江宁联合体2023-2024学年八年级上学期期中考试英语试卷
评论
0/150
提交评论