齿轮油泵故障分析及排除方法_第1页
齿轮油泵故障分析及排除方法_第2页
齿轮油泵故障分析及排除方法_第3页
齿轮油泵故障分析及排除方法_第4页
齿轮油泵故障分析及排除方法_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE34齿轮油泵故障分析及排除方法

齿轮油泵是通过一对参数和结构相同的渐开线齿轮的相互滚动啮合,将油箱内的低压油升至能做功的高压油的重要部件。是把发动机的机械能转换成液压能的动力装置。

1、油泵内部零件磨损

油泵内部零件磨损会造成内漏。其中浮动轴套与齿轮端面之间泄漏面积大,是造成内漏的主要部位。这部分漏损量占全部内漏的50%~70%左右。磨损内漏的齿轮泵其容积效率下降,油泵输出功率大大低于输入功率。其损耗全部转变为热能,因此会引起油泵过热。若将结合平面压紧,因工作时浮动轴套会有少量运动而造成磨损,结果使农具提升缓慢或不能提升,这样的浮动轴套必须更换或修理。

2、油泵壳体的磨损

主要是浮动轴套孔的磨损(齿轮轴与轴套的正常间隙是0.09~0.175mm,最大不得超过0.20mm)。齿轮工作受压力油的作用,齿轮尖部靠近油泵壳体,磨损泵体的低压腔部分。另一种磨损是壳体内工作面成圆周似的磨损,这种磨损主要是添加的油液不净所致,所以必须添加没有杂质的油液。3、油封磨损,胶封老化

卸荷片的橡胶油封老化变质,失去弹性,对高压油腔和低压油腔失去了密封隔离作用,会产生高压油腔的油压往低压油腔,称为“内漏”,它降低了油泵的工作压力和流量。

4、机油泵供油量不足或无油压现象:工作装置提升缓慢,提升时发抖或不能提升;油箱或油管内有气泡;提升时液压系统发出“唧、唧”声音;轻负荷时能提升,重负荷时不能提升伸缩舞台

故障原因:

(1)液压油箱油面过低;

(2)没按季节使用液压油;

(3)进油管被脏物严重堵塞;

(4)油泵主动齿轮油封损坏,空气进入液压系统;

(5)油泵进、出油口接头或弯接头“O”形密封圈损坏,弯接头的紧固螺栓或进、出油管螺母未上紧,空气进入液压系统;

(6)油泵内漏,密封圈老化;

(7)油泵端面或主、从动齿轮轴套端面磨损或刮伤,两轴套端面不平度超差;

(8)油泵内部零件装配错误造成内漏;

(9)“左旋”装“右旋”油泵,造成冲坏骨架油封;

(10)液压油过脏。

排除方法:

(1)根据季节添加或更换符合要求牌号的机油至规定油面处。取出油管内的异物,上紧接头处的螺栓或螺母;

(2)更换老化或损坏的骨架油封或“O”形密封胶圈;

(3)更换磨损的齿轮油泵或油泵轴套,磨损轻微时在平板上将端面磨平整。其不平度允许误差0.03mm;上轴套端面低于泵体上平面(正常值低于2.5~2.6mm),如超差时应在下轴套加0.1~0.2mm铜片来补偿,安装时则应套在后轴套上装入;

(4)卸荷片和密封环必须装在进油腔,两轴套才能保持平衡。卸荷片密封环应具有0.5mm的预压量;

(5)导向钢丝弹力应能同时将上、下轴套朝从动齿轮的旋转方向扭转一微小角度,使主、从动齿轮两个轴套的加工平面紧密贴合;

(6)轴套上的卸荷槽必须装在低压腔一侧,以消除齿轮啮合时产生有害的闭死容积;

(7)压入自紧油封前,应在其表面涂一层润滑油,还要注意将阻油边缘朝向前盖,不能装反;

(8)“右旋”泵不能装在“左旋”机上,否则会冲坏骨架油封;

(9)在装泵盖前,须向泵壳内倒入少量机油,并用手转动啮合齿轮;

(10)在装好油泵盖未拧紧螺栓之前,应检查泵盖和泵体之间的间隙,是否在0.3~0.6mm之间,若间隙过小,应更换大密封圈和卸压件。液压油泵装好后,应转动灵活无卡滞现象。齿轮油检测油液监测技术内容:将采集到的设备润滑油或工作介质样品,利用光、电、磁学等手段,分析其理化指标、检测所携带的磨损和污染物颗粒,从而获得机器的润滑和磨损状态的信息,定性和定量地描述设备的磨损状态,找出诱发因素,评价机器的工况和预测其故障,并确定故障部位、原因和类型.

主要物理性能指标.:粘度、粘度指数、水份、闪点、凝点和倾点、机械杂质、不溶物、斑点测试、抗氧化性、抗乳化性、抗泡沫性、抗磨性和极压性能

主要化学性能指标:总酸值、总碱值、防腐性、防锈性、所化安定性和添加剂元素分析.

常见的理化分析概念、方法和目的.

(1)粘度

基本概念:粘度是流体流动时内摩擦力的量度,用于衡量油品在特定温度下

抵抗流动的能力.

检测方法:用毛细管粘度计来测定油品的运动粘度.GB/T265、ASTMD445

检测目的:油品牌号划分的主要依据

油品选择的主要依据

油品劣化的重要报警指标

可判断用油的正确性

(2)水含量

基本概念:是指油中含水量的百分数(游离水、乳化水、溶解水)

检测方法:测定采用蒸馏法;GB/T260、ASTMD95

检测目的:水分破坏油膜,降低润滑性,加剧摩擦付部件的磨损,能够与油品起反应,形成酸、胶质和油泥水能析出油中的添加剂,降低油品的使用性能,低温时使油品流动性变差,腐蚀、锈蚀设备的金属材料

(3)闪点

基本概念:油品在规定加热条件下逸出蒸气的最低瞬间闪火温度.

检测方法:ASTMD92GB/T267

检测目的:闪点可以用来判断油品馏分组成的轻重;闪点是油品的安全指标;

闪点可以检测润滑油中混入的轻质燃料油.

(4)总酸值

基本概念:中和1g试样中全部酸性组分所需要的酸量,并换算为等当量的酸量,以mgKOH/g表示.

检测方法:颜色指示剂法和电位滴定法.

GB/T7304、ASTMD664

检测目的:判断基础油的精制程度;

成品油中酸性添加剂的量度;

油品使用过程中氧化变质的重要判别指标.

(5)总碱值

基本概念:中和1g试样中全部碱性组分所需要的酸量,并换算为等当量的碱量,以mgKOH/g表示.

检测方法:高氯酸电位滴定法SH/T0251-1993、ASTMD2896

检测目的:能反映内燃机油中碱性的清净分散添加剂的多少.

监测碱性添加剂防油品氧化的能力

对新油总碱值的检测

(6)污染度分析

基本概念:检测油中污染杂质颗粒的尺寸、数量及分布.

检测方法:自动颗粒计数法(遮光法)

NAS1638、ISO4406

检测目的:能定量检测润滑油中的污染颗粒的数量和污染等级;

对于精密的液压系统,固体颗粒污染将加剧控制元件的磨损;

对于透平系统,固体颗粒污染将加剧轴承等部件的磨损

(7)光谱元素分析

基本概念:检测在用油中磨损金属、污染元素以及添加剂元素的含量.

检测方法:ASTMD6595发射光谱法(颗粒尺寸<10um)

检测目的:磨损金属根据磨损金属的成分和含量趋势,判断设备有关部件的磨损情况;

污染元素判断油品污染程度和原因;

添加剂元素判断设备在用油添加剂损耗度.

(8)铁谱磨损分析

基本概念:检测在用油中磨损颗粒的形状、成分、大小和数量

检测方法:APTC/QTD-D01磁场沉积、显微镜分析判断.

检测目的:对磨损颗粒形状的分析,判断设备的异常磨损类型;

对磨损颗粒大小和数的分析,判断设备的异常磨损程度;

对磨损颗粒成分的分析,判断设备的异常磨损部位由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。

1雷电的形成

空中的尘埃、冰晶等物质在大气运动中剧烈摩擦生电以及云块切割磁力线,在云层上下层分别形成了带正负电荷的带电中心,运动过程中当异性带电中心之间的空气被其强大的电场击穿时,就形成放电。对风电场运行带来危害的主要是云地放电,带负电荷的云层向下靠近地面时,地面的凸出物、金属等会被感应出正电荷,随着电场的逐步增强,雷云向下形成下行先导,地面的物体形成向上闪流,云和大地之间的电位差达到一定程度(25—30kV/cm)时,即发生猛烈对地放电。

2雷电的主要特点

1、冲击电流大:其电流高达几万-几十万安培;

2、时间短:雷击分为三个阶段,即先导放电、主放电、余光放电,整个过程一般不会超过60微秒;

3、雷电流变化梯度大:雷电流变化梯度大,有的可达10千安/微秒;

4、冲击电压高强大的电流产生的交变磁场,其感应电压可高达上亿伏。通常雷击有三种形式,直击雷、感应雷、球形雷。

3雷电的破坏

设备遭雷击受损通常有四种情况,一是直接遭受雷击而损坏;二是雷电脉冲沿着与设备相连的信号线、电源线或其他金属管线侵入使设备受损;三是设备接地体在雷击时产生瞬间高电位形成地电位“反击”而损坏;四是设备安装的方法或安装位置不当,受雷电在空间分布的电场、磁场影响而损坏。由于风力发电机组的叶片高度较高,叶片成了最易受直接雷击的部件,其他部件遭感应雷和球形雷破坏的风险也相应增加。叶片是风力发电机组最昂贵的部件之一,大部分雷击事故只损坏叶片的叶尖部分,少量的毁损坏整个叶片。雷击造成叶片损坏主要有两个方面:一方面是雷电击中叶尖后,释放大量能量,强大的雷电流使叶尖结构内部的温度急骤升高,水分受热汽化膨胀,从而产生很大的机械力,造成叶尖结构爆裂破坏,严重时使整个叶片开裂。另一方面雷击造成的巨大声波,对叶片结构造成冲击破坏。还有一点值得关注的是雷击一般是击中叶片上翼面。

经过对雷击特点的研究分析,提出以下几点经济可靠的综合性防雷措施:

4.1利用新材料防雷电

针对雷电对设备的破坏特性,试验证明降低被击物体结构内部阻抗,对地形成通路就可以免遭雷击破坏。根据这一特性,在叶片上翼面复合材料中加入具有良好导电性能和比重轻的碳纤维,并在叶尖部位装一个接闪器,通过电缆与叶片法兰连接,再由轮毂通过塔架内的接地线接入地网形成雷电通道(如果通道中转动部分导电性能不能达到导电要求,可以加装导电滑环解决)。当雷电击中叶片时,强大的雷电流通过雷电通道泻入大地,达到避雷效果,而不致使对叶片及其他设备造成损坏。这样实际上叶片成了引雷针,将周围的雷电引来并提前放电,因此应特别注意雷电通道阻抗要非常小,连接导线要有足够导电截面及良好的导电性,接地网一定要保证尽量小的阻抗值。

4.2利用避雷网防雷电

将风场内所有建筑工程基础和地桩间利用导电截面积足够的金属导体连接为一体形成可靠的具有低电阻接地网,接地电阻越小越好。由于对地电阻小,强大的雷电流能够迅速散流到大地,使设备不受强电流、高电压冲击,对被保护设备起到很好的防护效果。

4.3利用避雷器防雷电

避雷器又称电涌保护器,在风力发电机组电力电缆和通讯控制线线路上安装避雷器,就能把因雷电感应而窜入电力电缆线、信号传输线的高电压限制在一定范围内,保证设备不被击穿而达到防雷效果。另外,因为通讯较脆弱、抗干扰能力较差,为避免雷电带来影响,建议风力发电机组与风场监控系统的通讯联系使用光纤传输。

4.4利用新技术监测雷电

在叶片上嵌置光导纤维,加上综合配套的软件,对叶片的载荷、温度、潜在断裂及破坏、雷电打击等起到连续不间断的全天候监测,并提供适时的预警或维修警告,而无需停机检查,对风机实行优化运营与使用,以提高运行的可靠性和延长叶片寿命。

总之,雷电能量非常巨大,雷击方式是复杂的,采用合理适当的防雷措施只能减少损失,只有更多新技术的突破和应用才能对雷电进行完全防护并加以利用。

一、直击雷防护

该风机主体高度约80米,叶片长度约40米,即风机最高点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。

国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0区(LPZ0A、LPZ0B),LPZ1区,LPZ2区。

在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。机舱内、塔架内的设备应属于LPZ1区,这其中包括电缆、发电机、齿轮箱等。塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于LPZ2。

对与现有风力发电机的LPZ0区防雷过电压保护装置进行分析后,在LPZ0区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。这就要求风机的叶片的制作及其材料提出很高的要求,即叶片必须能够承受足够大的电流,并且在叶片上添加导电性能良好、自身重量轻的类似于碳纤维的材料,用单独的线缆将叶片与塔身连接在一起,为雷电流泄放提供一个良好的通道。

机舱主机架除了与叶片相连,还连接机舱顶上避雷棒,与叶片位于相反的方向,估计该避雷棒用作为保护风速计和风标免受雷击。

根据风力发电机的使用性质及其重要性,参照《建筑物防雷设计规范》50057-94(2000版)关于建筑物的防雷分类,可以将风力发电机划分为二类防雷建筑。二类防雷建筑对应的滚球半径为45米,根据电气—几何模型

hr=10·I0.65

hr——雷闪的最后闪络距离(击距),即滚球半径

I——与hr对应的得到保护的最小雷电流幅值(KA),即比该电流小的雷电流可能击到被保护的空间。当hr=45米时,I=10.1KA,即在选用滚球半径为45米时,当雷电流大于10.1KA时,雷电闪击就会击在接闪器上;当雷电流小于10.1KA时,会发生绕机,即雷电可能击在被保护物上,而不是接闪器上;如果被保护物自身的高度超过45米时,还会发生侧击,即发生雷电时,闪击可能击在塔身上(塔身高约80米)。根据莫斯科灯塔观测到的雷击,有多次时击在灯塔下方的,即发生了侧击。同时,较大的高度使得上行雷的概率增大。由于风力发电机塔身较高,使得积雨云下端与叶片的距离接近,大气电场强度突增,导致发生局部的空气击穿而产生向上发展的流光,终至出现上行先导。

关于风力发电机的雷击概率,可以参照《高层建筑电气设计手册》提供的一个估算的经验公式。它是根据美国、波兰、日本、瑞典对特高层建筑的观察记录,得出的经验公式:N=3×10-5H2

H的单位为m,适用于1KL=10.由此可以估算出,在1KL=30的地区(上海接近此数),100m高的建筑,每年大约遭受1次雷击。从这个公式中可以揭示出一个规律,即高层建筑雷击概率与其高度的平方成正比。

以上直击雷的防护是建立在一个有良好接地体的基础上的,参照《建筑物防雷设计规范》GB50057-94及《微波站防雷与接地设计规范》YD2011-93相关条款,风力发电机防雷接地电阻不能小于5Ω。

二、风轮、机舱、水平轴、尾舵和塔身的等电位连接

机舱外壳应采用钢板制成,作为承受直击雷的载体,按照GB50057-94的要求,钢板厚度必须大于4mm,在机舱的上方安装几支避雷短针,防止雷电发生绕击和侧击时,穿透机舱,对机舱内设备造成损坏。如果机舱外壳为复合材料时,应在机舱外面敷设金属网格,兼作接闪器和屏蔽之用。网孔宜为30cm×30cm,钢丝直径不宜小于2.5mm。必要情况下,需通过屏蔽计算,加大金属网格的密度和铁丝的直径。初步估算,对于0.25/100μs的雷电流,应不小于40db,各网格连接处应焊接以保证电气连接。

风轮与机舱间、机舱与塔柱间、尾舵与水平轴间应通过铆接、焊接或螺栓连接等方法做可靠电气连接,也可以通过单独的多股塑铜线(截面不小于16mm2),各连接过度电阻尽量小,一般不大于0.03Ω。

以上各部件连接为一个电气的整体,使之遭受雷击时,能有一个快速的通道沿塔身引入接地装置。

三、电磁屏蔽

由于风力发电机为高耸塔式结构,非常紧凑,发电机、信息系统、控制系统都靠近塔壁,无论风轮、机舱、水平轴、还是尾舵受到雷击,机舱内的发电机及控制系统等设备可能受到机舱的高电位反击,在电源和控制回路沿塔筒引下过程中,也可能受到反击。

对发电机及其励磁系统,继电保护和控制系统、通信和信号以及计算机系统都应安装相应的过电压保护装置。

电力和信息回路由机舱到地面并网柜、变流器、塔底控制柜处应采取屏蔽电缆外,还应穿入接地铁管,使反击率降低。各回路应在柜内安装相应防雷装置,这样DBSGP(分流、均压、屏蔽、接地)系统在各节点层层设防。

各电气柜采用金属薄板制作,可以有效地防止电磁脉冲干扰,在电源控制系统的输入端,处于暂态过电压防护的目的,采用压敏电阻或暂态抑制二极管等保护设备与屏蔽系统连接,每个电控柜用不小于16mm2的多股塑铜线与接地端子连接。

四、机舱内各种柜的防护:

各种柜内的进线、出线处必须按照雷电防护区域的划分,通过雷击风险评估后,根据评估结果进行设计,根据建筑物信息系统的重要性和使用性质确定雷电防护等级,该风力发电机可以定为B级防护。在被保护的设备处加装三级浪涌保护器。第一级采用开关型的电涌保护器,第二级和第三级采用限压型的电涌保护器。且各参数必须符合规范要求的最小值,即一级标称放电电流In≥15KA(10/350μs)或In≥60KA(8/20μs),二级标称放电电流In≥40KA,三级标称放电电流In≥20KA。

对于690V/380V的风力发电机供电线路,为防止沿低压电源侵入的浪涌过电压损坏用电设备,供电回路建议采用TN-S供电方式。

1、变桨控制柜:变桨控制柜位于风机顶端,雷雨天气时容易遭受直击雷,所以柜里电源线3x400vac/20A,300vdc/6A,24vdc(b)/10A,230vac(b)/2A等用电设备进线前端应安装相应的三相交流避雷器(imax:100KA)、单项交流避雷器(imax:100KA)和24V直流电源避雷器(In:5KA)。

2、机舱到变桨柜通讯线采用双绞线通讯,双绞线两端在进入设备前应安装信号避雷器。双绞线必须穿金属管敷设或采用屏蔽双绞线,且金属管或屏蔽层两头接地。

3、机舱控制室:机舱控制室位于风机顶端,雷雨天气时极易遭受直击雷,里面的开关电源送到变浆控制柜内的出线端230vac(b)à300vdc/6A(变桨控制柜),开关电源230vac(b)à24vdc(b)/10A(变桨控制柜)直流电源必须安装电源浪涌保护器(In:5KA),开关电源UPS230vacà24vdc(c)/10的24伏电源处安装24V直流电源避雷器(In:5KA)。从塔底控制室到机舱控制室的Ups进线端(机舱控制室)安装电源避雷器(Imax:100KA)。

以上设备处必须安装能承受通过一级分类实验的电源浪涌避雷器。

塔底设备柜的防护

1、UPS230vac塔底控制室到机舱控制室的ups输出端(塔底控制室)加装电源避雷器(In:40KA)

2、变流器到机舱发电机转子的出线端和进线端分别加装通过二级分类试验的电源避雷器(In:40KA)和通过一级分类试验的电源避雷器(Imax:100KA)

3、并网柜到发电机定子之间的出线端和进线端分别加装通过二级分类试验的电源避雷器(In:40KA)和通过一级分类试验的电源避雷器(Imax:100KA)

4、各机柜的二次仪表线路应加装相应的电源避雷器(In:20KA)。

以上线缆建议采用穿金属管走线或者采用铠装电缆,金属管或铠装电缆必须在进入设备柜之前接地。电源避雷器的接地宜和风机的钢结构体连接在一起。

以上防护采用三级防护的原则,在易遭受直击雷的部位加装通过一级分类试验的电源避雷器,在舱底的设备柜内加装通过二级分类试验的电源避雷器,在弱点设备的电源处还应加装通过三级分类试验的电源避雷器,使设备得到充分的保护。风力发电机工作原理及原理图

现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网.如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电.

最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机.最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值.为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等.

齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分).同时也使得发电机易于控制,实现稳定的频率和电压输出.偏航系统可以使风轮扫掠面积总是垂直于主风向.要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度.

风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距.对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距.在停机时,叶片要顺桨,以便形成阻尼刹车.

早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距.

就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率.然后,随着风速的增加,一直控制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论