版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.2.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.3.函数的值域为()A. B. C. D.4.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()A. B. C.- D.-5.已知数列满足:,则()A.16 B.25 C.28 D.336.已知三棱柱()A. B. C. D.7.如图,在中,,且,则()A.1 B. C. D.8.函数的对称轴不可能为()A. B. C. D.9.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1 B. C. D.10.已知集合,则全集则下列结论正确的是()A. B. C. D.11.已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,,,,则B.若,,,则C.若,,,则D.若,,,则12.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.14.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.15.函数的图象在处的切线与直线互相垂直,则_____.16.设满足约束条件,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.18.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.19.(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.20.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.21.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.22.(10分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.2.A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.3.A【解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,,,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.4.A【解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.5.C【解析】
依次递推求出得解.【详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.6.C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=7.C【解析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.8.D【解析】
由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.9.B【解析】
设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.10.D【解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.11.B【解析】
根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,,,,则或与相交;故A错;B选项,若,,则,又,是两个不重合的平面,则,故B正确;C选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考题型.12.A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积.【详解】解:双曲线:双曲线中,,,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,,,,则三角形的面积为.故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题.14.1【解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.15.1.【解析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.16.【解析】
由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析.【解析】
(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.18.(1)存在;详见解析(2)【解析】
(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.19.(1)证明见解析(2)【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.【详解】证明:(1)因为平面,平面,所以.因为四边形是菱形,所以.又因为,平面,平面,所以平面.解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,因为与平面所成角为,即,所以又,所以,所以所以设平面的一个法向量,则令,则.因为平面,所以为平面的一个法向量,且所以,.所以二面角的正弦值为.【点睛】本题考查线面垂直的判定定理和性质定理,考查用向量法求二面角.立体几何中求空间角常常是建立空间直角坐标系,用空间向量法求空间角,这样可减少思维量,把问题转化为计算.20.(1)(2)【解析】
本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:21.(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解析】
(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【详解】(1)解:的定义域为,,当,时,,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,,所以,即.当时,,,则,即,又,所以,即.【点睛】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.22.(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析【解析】
(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业之间借款协议范本
- 三人合伙协议书2篇
- 2024年度居间服务协议:工程设计合同3篇
- 水车租赁合同电子版
- 汤姆索亚历险记课件教学
- 自动贩卖机场地协议书
- 数据保密合同
- 2024年度工程市场营销合同
- 二零二四年度工程设备采购合同标的详细描述及其服务内容扩展协议3篇
- 墙布销售的合同范本
- 搪瓷工艺的参数
- 街道出租屋综合管理(房屋租赁管理)站岗位职责
- 2023年社会养老保险调研报告3篇
- 生物技术与医疗
- 世界文明史智慧树知到答案章节测试2023年杭州师范大学
- 中国建设银行求职备考面试技巧
- 自动化制造系统 第3版 教学课件第一章 自动化制造系统概论
- YS/T 22-2010锑酸钠
- LY/T 2659-2016立木生物量模型及碳计量参数-桦树
- GB/T 30677-2014轻型汽车电子稳定性控制系统性能要求及试验方法
- GB 4806.1-2016食品安全国家标准食品接触材料及制品通用安全要求
评论
0/150
提交评论