版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知i为虚数单位,则()A. B. C. D.2.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.3.若复数满足,则的虚部为()A.5 B. C. D.-54.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A. B. C. D.5.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.6.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.7.已知为虚数单位,若复数,则A. B.C. D.8.在等差数列中,若为前项和,,则的值是()A.156 B.124 C.136 D.1809.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.10.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.5411.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则()A. B. C. D.12.复数在复平面内对应的点为则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.14.在中,内角所对的边分别是,若,,则__________.15.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.16.下图是一个算法流程图,则输出的S的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.18.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.19.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.20.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87921.(12分)已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面积.22.(10分)已知函数.(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.2.C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.3.C【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4.B【解析】
由题可知,,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,,即,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题5.D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.6.D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.7.B【解析】
因为,所以,故选B.8.A【解析】
因为,可得,根据等差数列前项和,即可求得答案.【详解】,,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.9.D【解析】
由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.10.C【解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.11.A【解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.12.B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距.设,,,,,,即,,即,又直线斜率为,即,,,,在双曲线上,,即,结合可解得:,,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.14.【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【详解】由于,所以,所以.由正弦定理得.故答案为:【点睛】本小题主要考查正弦定理解三角形,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查三角形的内角和定理,属于中档题.15.【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.16.【解析】
根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)答案见解析(3)答案见解析【解析】
(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数.【详解】(1),,设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,,故当时,,所以在上单调递增;当时,,;,,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点.【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.18.(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.19.(Ⅰ);(Ⅱ)证明见解析【解析】
(Ⅰ)求导得到,,解得答案.(Ⅱ),故,在上单调递减,在上单调递增,,设,证明函数单调递减,故,得到证明.【详解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,,故恒成立,故单调递减.,故当时,.【点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20.(1)0.0081(2)见解析,保留乙生产线较好.【解析】
(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:.设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计.那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:.(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,∵,,∴有90%把握认为该企业生产的这种产品的质量指标值与生产线有关.由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,∵,∴保留乙生产线较好.【点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.21.(1);(2)或.【解析】
(1)利用正弦定理对已知代数式化简,根据余弦定理求解余弦值;(2)根据余弦定理求出b=1或b=3,结合面积公式求解.【详解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化简得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C为三角形内角,∴sinC,∴S△ABCabsinC3×bb,则△ABC的面积为或.【点睛】此题考查利用正余弦定理求解三角形,关键在于熟练掌握正弦定理进行边角互化,利用余弦定理求解边长,根据面积公式求解面积.22.(1)x=1(2)证明见解析(3)【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证,即证,即证,构造函数进而求证;(3)不等式对一切正实数恒成立,,设,分类讨论进而求解.【详解】解:(1)令,所以,当时,,在上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省公务员面试模拟11
- 新疆申论模拟71
- 地方公务员海南申论2013年
- 2024年村民土地转让协议
- 新疆申论模拟3
- 深圳申论2007上半年
- 事业单位正式工劳动合同书2024年
- 2024年部门承包经营合同范本
- 2024年车辆定点维修协议书
- 2018年7月16日四川省公务员考试面试真题
- 小学英语人教PEP版6年级(上)期中考试复习
- 评茶员(高级)复习题含参考答案
- 2019年4月高等教育自学考试资产评估真题
- 《北京市社会保险单位信息变更登记表》
- 2024年国家开放大学(电大)-混凝土结构设计(A)考试近5年真题集锦(频考类试题)带答案
- 新员工三级安全教育考试试题参考答案
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
- 全国巾帼家政服务职业技能大赛(母婴护理员)理论考试题库(含答案)
- 仿生青蛙机器人的设计与运动控制
- 职业健康安全培训课件(共32张课件)
- 2024-2025学年八年级英语上学期期中测试卷03人教新目标版
评论
0/150
提交评论