2022届云南省达标名校高考数学一模试卷含解析_第1页
2022届云南省达标名校高考数学一模试卷含解析_第2页
2022届云南省达标名校高考数学一模试卷含解析_第3页
2022届云南省达标名校高考数学一模试卷含解析_第4页
2022届云南省达标名校高考数学一模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.2.已知复数,若,则的值为()A.1 B. C. D.3.在复平面内,复数对应的点的坐标为()A. B. C. D.4.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.5.已知集合,则()A. B.C. D.6.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③7.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.48.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.10.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.11.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体12.直线x-3y+3=0经过椭圆x2a2+y2bA.3-1 B.3-12 C.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小正周期为________;若函数在区间上单调递增,则的最大值为________.14.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB15.已知函数,则的值为____16.已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,,的内切圆的圆心的纵坐标为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.18.(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.19.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.20.(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.21.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.22.(10分)已知均为正实数,函数的最小值为.证明:(1);(2).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.2.D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.3.C【解析】

利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4.C【解析】

设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.5.C【解析】

由题意和交集的运算直接求出.【详解】∵集合,∴.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.6.D【解析】

对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.7.D【解析】

根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.8.C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.9.C【解析】

先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.10.B【解析】

根据指数函数的单调性,结合特殊值进行辨析.【详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.11.C【解析】

根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.12.A【解析】

由直线x-3y+3=0过椭圆的左焦点F,得到左焦点为再由FC=2CA,求得A3【详解】由题意,直线x-3y+3=0经过椭圆的左焦点F,令所以c=3,即椭圆的左焦点为F(-3,0)直线交y轴于C(0,1),所以,OF=因为FC=2CA,所以FA=3又由点A在椭圆上,得3a由①②,可得4a2-24所以e2所以椭圆的离心率为e=3故选A.【点睛】本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于e的方程,即可得二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

直接计算得到答案,根据题意得到,,解得答案.【详解】,故,当时,,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.14.-7【解析】

由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,15.4【解析】

根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.16.2【解析】

由题意画出图形,设内切圆的圆心为,圆分别切于,可得四边形为正方形,再由圆的切线的性质结台双曲线的定义,求得的内切圆的圆心的纵坐标,结合已知列式,即可求得双曲线的离心率.【详解】设内切圆的圆心为,圆分别切于,连接,则,故四边形为正方形,边长为圆的半径,由,,得,与重合,,,即——①,——②联立①②解得:,又因圆心的纵坐标为,.故答案为:【点睛】本题考查双曲线的几何性质,考查数形结合思想与运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】

(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20151050所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.18.(1),.(2)【解析】

(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式:,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.19.(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.20.(1)(2)【解析】

(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,,,,故综上,实数的取值范围是(2)设,,则,令,,在单调递增,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论