版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学建模与数学试验后勤工程学院数学教研室回归分析10/10/1电子发烧友第1页实验目试验内容2、掌握用数学软件求解回归分析问题。1、直观了解回归分析基本内容。1、回归分析基本理论。3、试验作业。2、用数学软件求解回归分析问题。10/10/2电子发烧友第2页一元线性回归多元线性回归回归分析数学模型及定义*模型参数预计*检验、预测与控制可线性化一元非线性回归(曲线回归)数学模型及定义*模型参数预计*多元线性回归中检验与预测逐步回归分析10/10/3电子发烧友第3页一、数学模型例1测16名成年女子身高与腿长所得数据以下:以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi)在平面直角坐标系上标出.散点图解答10/10/4电子发烧友第4页一元线性回归分析主要任务是:返回10/10/5电子发烧友第5页二、模型参数预计1、回归系数最小二乘预计10/10/6电子发烧友第6页10/10/7电子发烧友第7页返回10/10/8电子发烧友第8页三、检验、预测与控制1、回归方程显著性检验10/10/9电子发烧友第9页(Ⅰ)F检验法
(Ⅱ)t检验法10/10/10电子发烧友第10页(Ⅲ)r检验法10/10/11电子发烧友第11页2、回归系数置信区间10/10/12电子发烧友第12页3、预测与控制(1)预测10/10/13电子发烧友第13页(2)控制返回10/10/14电子发烧友第14页四、可线性化一元非线性回归(曲线回归)例2出钢时所用盛钢水钢包,因为钢水对耐火材料侵蚀,容积不停增大.我们希望知道使用次数与增大容积之间关系.对一钢包作试验,测得数据列于下表:解答10/10/15电子发烧友第15页散点图此即非线性回归或曲线回归
问题(需要配曲线)配曲线普通方法是:10/10/16电子发烧友第16页通常选择六类曲线以下:返回10/10/17电子发烧友第17页一、数学模型及定义返回10/10/18电子发烧友第18页二、模型参数预计10/10/19电子发烧友第19页返回10/10/20电子发烧友第20页三、多元线性回归中检验与预测
(Ⅰ)F检验法(Ⅱ)r检验法(残差平方和)10/10/21电子发烧友第21页2、预测(1)点预测(2)区间预测返回10/10/22电子发烧友第22页四、逐步回归分析(4)“有进有出”逐步回归分析。(1)从全部可能因子(变量)组合回归方程中选择最优者;(2)从包含全部变量回归方程中逐次剔除不显著因子;(3)从一个变量开始,把变量逐一引入方程;选择“最优”回归方程有以下几个方法:
“最优”回归方程就是包含全部对Y有影响变量,而不包含对Y影响不显著变量回归方程。以第四种方法,即逐步回归分析法在筛选变量方面较为理想.10/10/23电子发烧友第23页这个过程重复进行,直至既无不显著变量从回归方程中剔除,又无显著变量可引入回归方程时为止。逐步回归分析法思想:从一个自变量开始,视自变量Y作用显著程度,从大到地依次逐一引入回归方程。当引入自变量因为后面变量引入而变得不显著时,要将其剔除掉。引入一个自变量或从回归方程中剔除一个自变量,为逐步回归一步。对于每一步都要进行Y值检验,以确保每次引入新显著性变量前回归方程中只包含对Y作用显著变量。返回10/10/24电子发烧友第24页统计工具箱中回归分析命令1、多元线性回归2、多项式回归3、非线性回归4、逐步回归返回10/10/25电子发烧友第25页多元线性回归
b=regress(Y,X)1、确定回归系数点预计值:10/10/26电子发烧友第26页3、画出残差及其置信区间:rcoplot(r,rint)2、求回归系数点预计和区间预计、并检验回归模型:
[b,bint,r,rint,stats]=regress(Y,X,alpha)回归系数区间预计残差用于检验回归模型统计量,有三个数值:相关系数r2、F值、与F对应概率p置信区间显著性水平(缺省时为0.05)10/10/27电子发烧友第27页例1解:1、输入数据:x=[143145146147149150153154155156157158159160162164]';X=[ones(16,1)x];Y=[8885889192939395969897969899100102]';2、回归分析及检验:[b,bint,r,rint,stats]=regress(Y,X)b,bint,statsToMATLAB(liti11)题目10/10/28电子发烧友第28页3、残差分析,作残差图:rcoplot(r,rint)从残差图能够看出,除第二个数据外,其余数据残差离零点均较近,且残差置信区间均包含零点,这说明回归模型y=-16.073+0.7194x能很好符合原始数据,而第二个数据可视为异常点.4、预测及作图:z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')返回ToMATLAB(liti12)10/10/29电子发烧友第29页多项式回归(一)一元多项式回归
(1)确定多项式系数命令:[p,S]=polyfit(x,y,m)(2)一元多项式回归命令:polytool(x,y,m)1、回归:y=a1xm+a2xm-1+…+amx+am+12、预测和预测误差预计:(1)Y=polyval(p,x)求polyfit所得回归多项式在x处预测值Y;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit所得回归多项式在x处预测值Y及预测值显著性为1-alpha置信区间YDELTA;alpha缺省时为0.5.10/10/30电子发烧友第30页法一直接作二次多项式回归:t=1/30:1/30:14/30;s=[11.8615.6720.6026.6933.7141.9351.1361.4972.9085.4499.08113.77129.54146.48];
[p,S]=polyfit(t,s,2)ToMATLAB(liti21)得回归模型为:10/10/31电子发烧友第31页法二化为多元线性回归:t=1/30:1/30:14/30;s=[11.8615.6720.6026.6933.7141.9351.1361.4972.9085.4499.08113.77129.54146.48];T=[ones(14,1)t'(t.^2)'];[b,bint,r,rint,stats]=regress(s',T);b,statsToMATLAB(liti22)得回归模型为:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')预测及作图ToMATLAB(liti23)10/10/32电子发烧友第32页(二)多元二项式回归命令:rstool(x,y,’model’,alpha)nm矩阵显著性水平(缺省时为0.05)n维列向量10/10/33电子发烧友第33页例3设某商品需求量与消费者平均收入、商品价格统计数据以下,建立回归模型,预测平均收入为1000、价格为6时商品需求量.法一直接用多元二项式回归:x1=[10006001200500300400130011001300300];x2=[5766875439];y=[10075807050659010011060]';x=[x1'x2'];rstool(x,y,'purequadratic')10/10/34电子发烧友第34页在画面左下方下拉式菜单中选”all”,则beta、rmse和residuals都传送到Matlab工作区中.在左边图形下方方框中输入1000,右边图形下方方框中输入6。则画面左边“PredictedY”下方数据变为88.47981,即预测出平均收入为1000、价格为6时商品需求量为88.4791.10/10/35电子发烧友第35页在Matlab工作区中输入命令:beta,rmseToMATLAB(liti31)10/10/36电子发烧友第36页结果为:b=110.53130.1464-26.5709-0.00011.8475stats=0.970240.66560.0005法二ToMATLAB(liti32)返回将化为多元线性回归:10/10/37电子发烧友第37页非线性回归(1)确定回归系数命令:
[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’,beta0,alpha)1、回归:残差Jacobian矩阵回归系数初值是事先用m-文件定义非线性函数预计出回归系数输入数据x、y分别为矩阵和n维列向量,对一元非线性回归,x为n维列向量。2、预测和预测误差预计:[Y,DELTA]=nlpredci(’model’,x,beta,r,J)求nlinfit或nlintool所得回归函数在x处预测值Y及预测值显著性为1-alpha置信区间YDELTA.10/10/38电子发烧友第38页例4对第一节例2,求解以下:2、输入数据:x=2:16;y=[6.428.209.589.59.7109.939.9910.4910.5910.6010.8010.6010.9010.76];beta0=[82]';3、求回归系数:[beta,r,J]=nlinfit(x',y','volum',beta0);beta得结果:beta=11.6036-1.0641即得回归模型为:ToMATLAB(liti41)题目10/10/39电子发烧友第39页4、预测及作图:[YY,delta]=nlpredci('volum',x',beta,r,J);plot(x,y,'k+',x,YY,'r')ToMATLAB(liti42)10/10/40电子发烧友第40页例5财政收入预测问题:财政收入与国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资等原因相关。下表列出了1952-1981年原始数据,试结构预测模型。
解设国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资分别为x1、x2、x3、x4、x5、x6,财政收入为y,设变量之间关系为:y=ax1+bx2+cx3+dx4+ex5+fx6使用非线性回归方法求解。10/10/41电子发烧友第41页1.
对回归模型建立M文件model.m以下:functionyy=model(beta0,X)a=beta0(1);b=beta0(2);c=beta0(3);d=beta0(4);e=beta0(5);f=beta0(6);x1=X(:,1);x2=X(:,2);x3=X(:,3);x4=X(:,4);x5=X(:,5);x6=X(:,6);yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6;
10/10/42电子发烧友第42页2.
主程序liti6.m以下:X=[598.00349.00461.0057482.0020729.0044.00…………..2927.006862.001273.00100072.043280.00496.00];y=[184.00216.00248.00254.00268.00286.00357.00444.00506.00...271.00230.00266.00323.00393.00466.00352.00303.00447.00...564.00638.00658.00691.00655.00692.00657.00723.00922.00...890.00826.00810.0]';beta0=[0.50-0.03-0.600.01-0.020.35];betafit=nlinfit(X,y,'model',beta0)ToMATLAB(liti6)10/10/43电子发烧友第43页betafit=0.5243-0.0294-0.63040.0112-0.02300.3658即y=0.5243x1-0.0294x2-0.6304x3+0.0112x4-0.0230x5+0.3658x6结果为:返回10/10/44电子发烧友第44页逐步回归逐步回归命令是:stepwise(x,y,inmodel,alpha)运行stepwise命令时产生三个图形窗口:StepwisePlot,StepwiseTable,StepwiseHistory.在StepwisePlot窗口,显示出各项回归系数及其置信区间.StepwiseTable窗口中列出了一个统计表,包含回归系数及其置信区间,以及模型统计量剩下标准差(RMSE)、相关系数(R-square)、F值、与F对应概率P.矩阵列数指标,给出初始模型中包含子集(缺省时设定为全部自变量)显著性水平(缺省时为0.5)自变量数据,阶矩阵因变量数据,阶矩阵10/10/45电子发烧友第45页例6水泥凝固时放出热量y与水泥中4种化学成份x1、x2、x3、x4
相关,今测得一组数据以下,试用逐步回归法确定一个线性模型.1、数据输入:x1=[7111117113122111110]';x2=[26295631525571315447406668]';x3=[615886917221842398]';x4=[6052204733226442226341212]';y=[78.574.3104.387.695.9109.2102.772.593.1115.983.8113.3109.4]';x=[x1x2x3x4];10/10/46电子发烧友第46页2、逐步回归:(1)先在初始模型中取全部自变量:stepwise(x,y)得图StepwisePlot和表Stepwis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度不锈钢水箱风险防范与违约责任合同
- 2024年度城市核心区域喷泉规划合同
- 2024年度广告投放合同投放内容详述
- 身体护肤乳市场发展现状调查及供需格局分析预测报告
- 头发脱色剂市场发展现状调查及供需格局分析预测报告
- 2024年度医疗设备采购合同及售后服务协议
- 2024年度服务外包合同:某足疗店与服务外包公司之间的合同
- 2024年度建筑工程合同标的详细描述
- 2024年度市场营销合作独家代理合同
- 2024年度农产品采购与保密合同
- 12月ACCAF9考试真题答案(优推内容)
- led背光源BLU学习资料ppt课件
- 乌兰察布城规划管理技术规定
- 初中人教版七年级上册音乐1.5学吹竖笛(29张)ppt课件
- 反洗钱终结性考试题目及答案
- 飞行模拟器视景显示系统的设计
- 基于NFC移动支付技术在地铁自动售检票系统中运用分析
- 肺炎PPTPPT课件
- 新生儿访视技术规范
- 浅谈如何在生物教学中渗透健康教育
- 关于在我县建设1000亩前胡中药材基地的报告 (4)
评论
0/150
提交评论