2024年高考数学(人教B版)一轮复习教案第9章9.4列联表与独立性检验(含答案)_第1页
2024年高考数学(人教B版)一轮复习教案第9章9.4列联表与独立性检验(含答案)_第2页
2024年高考数学(人教B版)一轮复习教案第9章9.4列联表与独立性检验(含答案)_第3页
2024年高考数学(人教B版)一轮复习教案第9章9.4列联表与独立性检验(含答案)_第4页
2024年高考数学(人教B版)一轮复习教案第9章9.4列联表与独立性检验(含答案)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§9.4列联表与独立性检验考试要求1.通过实例,理解2×2列联表的统计意义.2.通过实例,了解独立性检验及其应用.知识梳理列联表与独立性检验(1)2×2列联表:如果随机事件A与B的样本数据如下表格形式:Aeq\x\to(A)总计Baba+beq\x\to(B)cdc+d总计a+cb+da+b+c+d在这个表格中,核心的数据是中间的4个格子,所以这样的表格通常称为2×2列联表.(2)在2×2列联表中,定义随机变量χ2=eq\f(nad-bc2,a+bc+da+cb+d),任意给定α(称为显著性水平),可以找到满足条件P(χ2≥k)=α的数k(称为显著性水平α对应的分位数),①若χ2≥k成立,就称在犯错误的概率不超过α的前提下,可以认为A与B不独立(也称A与B有关),或说有1-α的把握认为A与B有关;②若χ2<k成立,就称不能得到前述结论.这一过程通常称为独立性检验.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)2×2列联表中的数据是两个分类变量的频数.(√)(2)事件A和B的独立性检验无关,即两个事件互不影响.(×)(3)χ2的大小是判断事件A和B是否相关的统计量.(√)(4)在2×2列联表中,若|ad-bc|越小,则说明两个分类变量之间关系越强.(×)教材改编题1.某机构为调查网游爱好者是否有性别差异,通过调研数据统计:在500名男生中有200名爱玩网游,在400名女生中有50名爱玩网游.若要确定网游爱好是否与性别有关时,用下列最适合的统计方法是()A.均值 B.方差C.独立性检验 D.回归分析答案C解析由题意可知,“爱玩网游”与“性别”是两类变量,其是否有关,应用独立性检验判断.2.如表是2×2列联表,则表中a,b的值分别为()y1y2总计x1a835x2113445总计b4280A.27,38 B.28,38C.27,37 D.28,37答案A解析a=35-8=27,b=a+11=27+11=38.3.已知P(χ2≥6.635)=0.01,P(χ2≥10.828)=0.001.在检验喜欢某项体育运动与性别是否有关的过程中,某研究员搜集数据并计算得到χ2=7.235,在犯错误的概率不超过________的前提下,可以认为喜欢该项体育运动与性别有关.答案0.01解析因为6.635<7.235<10.828,所以在犯错误的概率不超过0.01的前提下,可以认为喜欢该项体育运动与性别有关.题型一列联表与χ2的计算例1(1)为了解某大学的学生是否喜欢体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女总计喜欢ab73不喜欢c25总计74则a-b-c等于()A.7B.8C.9D.10答案C解析根据题意,可得c=120-73-25=22,a=74-22=52,b=73-52=21,补充完整2×2列联表为:男女总计喜欢522173不喜欢222547总计7446120∴a-b-c=52-21-22=9.(2)为加强素质教育,使学生各方面全面发展,某学校对学生文化课与体育课的成绩进行了调查统计,结果如表:体育课不及格体育课及格总计文化课及格57221278文化课不及格164359总计73264337在对体育课成绩与文化课成绩进行独立性检验时,根据以上数据可得到χ2的值为()A.1.255 B.38.214C.0.0037 D.2.058答案A解析χ2=eq\f(nad-bc2,a+bc+da+cb+d)=eq\f(337×57×43-16×2212,278×59×73×264)≈1.255.思维升华2×2列联表是4行4列,计算时要准确无误,关键是对涉及的变量分清类别.跟踪训练1某次国际会议为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作,在如表“性别与会外语”的2×2列联表中,a+b+d=________.会外语不会外语总计男ab20女6d总计1850答案44解析由题意得a+b+d+6=50,所以a+b+d=50-6=44.题型二列联表与独立性检验例2(2022·全国甲卷改编)甲、乙两城之间的长途客车均由A和B两家公司运营.为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),α=P(χ2≥k)0.1000.0500.010k2.7063.8416.635解(1)由题表可得A公司甲、乙两城之间的长途客车准点的概率为eq\f(240,240+20)=eq\f(12,13),B公司甲、乙两城之间的长途客车准点的概率为eq\f(210,210+30)=eq\f(7,8).(2)x2=eq\f(500×240×30-20×2102,240+20×210+30×240+210×20+30)≈3.205,所以有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.思维升华独立性检验的一般步骤(1)根据样本数据制成2×2列联表.(2)根据公式χ2=eq\f(nad-bc2,a+bc+da+cb+d)计算.(3)比较χ2与临界值的大小关系,作统计推断.跟踪训练2为了减少自身消费的碳排放,“绿色消费”等绿色生活方式渐成风尚.为获得不同年龄段的人对“绿色消费”意义的认知情况,某地研究机构将“90后与00后”作为A组,将“70后与80后”作为B组,并从A,B两组中各随机选取了100人进行问卷调查,整理数据后获得如下列联表:单位:人年龄段认知情况总计知晓不知晓A组(90后与00后)7525100B组(70后与80后)4555100总计12080200(1)若从样本内知晓“绿色消费”意义的120人中用分层抽样方法随机抽取16人,问应在A组、B组中各抽取多少人?(2)是否有99.9%的把握认为对“绿色消费”意义的认知情况与年龄有关?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α=P(χ2≥k)0.10.050.010.0050.001k2.7063.8416.6357.87910.828解(1)由题意知,在A组中抽取的人数为16×eq\f(75,120)=10.在B组中抽取的人数为16×eq\f(45,120)=6.(2)由题意,得χ2=eq\f(200×75×55-25×452,120×80×100×100)=18.75,故有99.9%的把握认为对“绿色消费”意义的认知情况与年龄有关.题型三独立性检验的综合应用例3体育运动是强身健体的重要途径,《中国儿童青少年体育健康促进行动方案(2020-2030)》(下面简称“体育健康促进行动方案”)中明确提出青少年学生每天在校内参与不少于60分钟的中高强度身体活动的要求.随着“体育健康促进行动方案”的发布,体育运动受到各地中小学的高度重视,众多青少年的体质健康得到很大的改善.某中学教师为了了解体育运动对学生的数学成绩的影响情况,现从该中学高三年级的一次月考中随机抽取1000名学生,调查他们平均每天的体育运动情况以及本次月考的数学成绩情况,得到如表数据:数学成绩(分)[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]人数(人)2512535030015050运动达标的人数(人)104514520010743约定:平均每天进行体育运动的时间不少于60分钟的为“运动达标”,数学成绩排在年级前50%以内(含50%)的为“数学成绩达标”.(1)求该中学高三年级本次月考数学成绩的65%分位数;(2)请估计该中学高三年级本次月考数学成绩的平均分(同一组中的数据用该组区间的中点值作代表);(3)请根据已知数据完成下列列联表,并判断是否有99.9%的把握认为“数学成绩达标”与“运动达标”有关.数学成绩达标人数数学成绩不达标人数总计运动达标人数运动不达标人数总计附:χ2=eq\f(nad-bc2,a+bc+da+cb+d)(n=a+b+c+d).α=P(χ2≥k)0.0100.0050.001k6.6357.87910.828解(1)每组的频率依次为0.025,0.125,0.350,0.300,0.150,0.050,∵0.025+0.125+0.350=0.500<0.65,0.025+0.125+0.350+0.300=0.800>0.65,且eq\f(0.500+0.800,2)=0.65,高三年级本次月考数学成绩的65%分位数位于[90,110)内,且为[90,110)的中点100,该中学高三年级本次月考数学成绩的65%分位数为100.(2)该中学高三年级本次月考数学成绩的平均分eq\x\to(x)=0.025×40+0.125×60+0.350×80+0.300×100+0.150×120+0.050×140=91.50,估计该中学高三年级本次月考数学成绩的平均分为91.50分.(3)列联表如表所示:数学成绩达标人数数学成绩不达标人数总计运动达标人数350200550运动不达标人数150300450总计5005001000χ2=eq\f(1000×350×300-200×1502,550×450×500×500)=eq\f(1000,11)≈90.9,∴有99.9%的把握认为“数学成绩达标”与“运动达标”有关.思维升华独立性检验的考查,往往与概率和抽样统计图等一起考查,这类问题的求解往往按各小题及提问的顺序,一步步进行下去,是比较容易解答的,考查单纯的独立性检验往往用小题的形式,而且χ2的公式一般会在原题中给出.跟踪训练3某网红奶茶品牌公司计划在W市某区开设加盟分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的5个区域的数据作了初步处理后得到下列表格,记x表示在5个区域开设分店的个数,y表示这x个分店的年收入之和.x(个)23456y(十万元)2.5344.56(1)该公司经过初步判断,可用回归模型拟合y与x的关系,求y关于x的回归直线方程;(2)如果该公司最终决定在该区选择两个合适的地段各开设一个分店,根据市场调查得到如下统计数据,第一分店每天的顾客平均为30人,其中5人会购买该品牌奶茶,第二分店每天的顾客平均为80人,其中20人会购买该品牌奶茶.是否有90%的把握认为两个店的顾客下单率有差异.参考公式:eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x);χ2=eq\f(nad-bc2,a+bc+da+cb+d).解(1)由题意可得,eq\x\to(x)=eq\f(2+3+4+5+6,5)=4,eq\x\to(y)=eq\f(2.5+3+4+4.5+6,5)=4,eq\i\su(i=1,5,x)iyi=2×2.5+3×3+4×4+5×4.5+6×6=88.5,eq\i\su(i=1,5,x)eq\o\al(2,i)=22+32+42+52+62=90,设y关于x的回归直线方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,5,x)iyi-5\x\to(x)\x\to(y),\i\su(i=1,5,x)\o\al(2,i)-5\x\to(x)2)=eq\f(88.5-5×4×4,90-5×42)=0.85,eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=4-0.85×4=0.6,∴y关于x的回归直线方程为eq\o(y,\s\up6(^))=0.85x+0.6.(2)由题意可知2×2列联表如表所示:不下单下单总计分店一25530分店二602080总计8525110∴χ2=eq\f(110×25×20-5×602,30×80×85×25)=eq\f(44,51)≈0.863,∴没有90%的把握认为两个店的顾客下单率有差异.课时精练1.下列关于独立性检验的说法正确的是()A.独立性检验是对两个变量是否具有线性相关关系的一种检验B.独立性检验可以100%确定两个变量之间是否具有某种关系C.利用χ2独立性检验推断吸烟与患肺病的关联中,若有99%的把握认为吸烟与患肺病有关系时,则我们可以说在100个吸烟的人中,有99人患肺病D.对于独立性检验,随机变量χ2的值越小,判定“两变量有关系”犯错误的概率越大答案D解析对于A,独立性检验是通过卡方计算来判断两个变量存在关联的可能性的一种方法,并非检验二者是否是线性相关,故错误;对于B,独立性检验并不能100%确定两个变量相关,故错误;对于C,99%是指“抽烟”和“患肺病”存在关联的可能性,并非抽烟人中患肺病的发病率,故错误;对于D,根据卡方计算的定义可知该选项正确.2.某村庄对该村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:每年体检每年未体检总计老年人a7c年轻人6bd总计ef50已知抽取的老年人、年轻人各25名,则对列联表数据的分析错误的是()A.a=18 B.b=19C.c+d=50 D.e-f=2答案D解析由题意得,a+7=c=25,6+b=d=25,a+6=e,7+b=f,e+f=50,所以a=18,b=19,c+d=50,e=24,f=26,则e-f=-2.3.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据:药物流感患流感未患流感服用218未服用812下表是χ2独立性检验中几个常用的小概率值和相应的临界值:α=P(χ2≥k)0.10.050.010.005k2.7063.8416.6357.879根据表中数据,计算χ2=eq\f(nad-bc2,a+bc+da+cb+d),若由此认为“该药物预防流感有效果”,则该结论出错的概率不超过()A.0.05B.0.1C.0.01D.0.005答案A解析由题意知,χ2=eq\f(40×2×12-8×182,10×30×20×20)=4.8>3.841,由临界值表可知,认为“该药物预防流感有效果”,则该结论出错的概率不超过0.05.4.(多选)(2022·郑州模拟)为考察一种新型药物预防疾病的效果,某科研小组进行动物实验,收集整理数据后将所得结果填入相应的2×2列联表中,由列联表中的数据计算得χ2≈9.616.参照附表,下列结论正确的是()附表:α=P(χ2≥k)0.10.050.010.0050.001k2.7063.8416.6357.87910.828A.有99.9%的把握认为“药物有效”B.没有99.9%的把握认为“药物有效”C.有99.5%的把握认为“药物有效”D.没有99.5%的把握认为“药物有效”答案BC解析因为χ2≈9.616,所以7.879<χ2<10.828,所以没有99.9%的把握认为“药物有效”,有99.5%的把握认为“药物有效”.5.(多选)(2023·南通模拟)根据分类变量x与y的观察数据,计算得到χ2=2.974,依据表中给出的临界值,作出下列判断,正确的是()α=P(χ2≥k)0.10.050.010.0050.001k2.7063.8416.6357.87910.828A.有95%的把握认为变量x与y相互独立B.没有95%的把握认为变量x与y相互独立C.变量x与y相互独立,这个结论犯错误的概率不超过0.1D.变量x与y不相互独立,这个结论犯错误的概率不超过0.1答案AD解析因为χ2=2.974>2.706,所以变量x与y不相互独立,这个结论犯错误的概率不超过0.1.6.为考查某种营养品对儿童身高增长的影响,选取部分儿童进行试验,根据100个有放回简单随机样本的数据,得到如下列联表,由表可知下列说法正确的是()营养品身高总计有明显增长无明显增长食用a1050未食用b3050总计6040100参考公式:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.参考数据:α=P(χ2≥k)0.10.050.010.0050.001k2.7063.8416.6357.87910.828A.a=b=30B.χ2≈12.667C.从样本中随机抽取1名儿童,抽到食用该营养品且身高有明显增长的儿童的概率是eq\f(3,5)D.有99.9%的把握认为该营养品对儿童身高增长有影响答案D解析由题可知a=50-10=40,b=50-30=20,所以A错误;χ2=eq\f(100×40×30-10×202,50×50×60×40)≈16.667,所以有99.9%的把握认为该营养品对儿童身高增长有影响,所以B错误,D正确;从样本中随机抽取1名儿童,抽到食用该营养品且身高有明显增长的儿童的概率是eq\f(40,100)=eq\f(2,5),所以C错误.7.如表是对于“喜欢运动”与性别是否有关的2×2列联表,依据表中的数据,得到χ2≈________(结果保留到小数点后3位).喜欢运动不喜欢运动总计男402868女51217总计454085答案4.722解析χ2=eq\f(85×40×12-28×52,45×40×68×17)≈4.722.8.一项研究同年龄段的男、女生的注意力差别的脑功能实验,其实验数据如表所示:注意力稳定注意力不稳定男生297女生335则χ2=________(精确到小数点后三位),________(填“有”或“没有”)95%的把握认为该年龄段的学生在注意力的稳定性上对于性别有显著差异.答案0.538没有解析由表中数据可知a=29,b=7,c=33,d=5,n=a+b+c+d=74,根据χ2=eq\f(nad-bc2,a+cc+db+da+b),计算可知χ2=eq\f(74×145-2312,29+33×33+5×7+5×29+7)≈0.538,所以没有95%的把握认为该年龄段的学生在注意力的稳定性上对于性别有显著差异.9.(2021·全国甲卷改编)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品总计甲机床15050200乙机床12080200总计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α=P(χ2≥k)0.0500.0100.001k3.8416.63510.828解(1)根据题表中数据知,甲机床生产的产品中一级品的频率是eq\f(150,200)=0.75,乙机床生产的产品中一级品的频率是eq\f(120,200)=0.6.(2)根据题表中的数据可得χ2=eq\f(400×150×80-120×502,200×200×270×130)=eq\f(400,39)≈10.256.因为10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.10.某花圃为提高某品种花苗质量,开展技术创新活动,A,B在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.(1)求图中a的值,并求综合评分的中位数;(2)填写下面的2×2列联表,并判断能否有99%的把握认为优质花苗与培育方法有关,请说明理由.优质花苗非优质花苗总计甲培育法20乙培育法10总计附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.α=P(χ2≥k)0.10.050.010.0050.001k2.7063.8416.6357.87910.828解(1)由直方图的性质可知,0.005×10+0.010×10+0.025×10+10a+0.020×10=1,解得a=0.040,因为(0.02+0.04)×10=0.6>0.5,所以中位数位于[80,90)内,设中位数为x,则有0.020×10+0.040×(90-x)=0.5,解得x=82.5.故综合评分的中位数为82.5.(2)由(1)得优质花苗的频率为0.6,所以样本中优质花苗的数量为60,得如下列联表:优质花苗非优质花苗总计甲培育法203050乙培育法401050总计6040100χ2=eq\f(100×20×10-30×402,60×40×50×50)≈16.667,所以有99%的把握认为优质花苗与培育方法有关.11.某中学调查了高一年级学生的选科倾向,随机抽取300人,其中选考物理的有220人,选考历史的有80人,统计各选科人数如表,则下列说法正确的是()选择科目选考类别思想政治地理化学生物物理类80100145115历史类50453035α=P(χ2≥k)0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828A.物理类的学生中选择政治的比例比历史类的学生中选择政治的比例高B.物理类的学生中选择地理的比例比历史类的学生中选择地理的比例高C.没有90%的把握认为选择生物与选考类别有关D.有90%的把握认为选择生物与选考类别有关答案C解析对于A,物理类的学生中选择政治的比例为eq\f(80,220)=eq\f(4,11),历史类的学生中选择政治的比例为eq\f(50,80)=eq\f(5,8),因为eq\f(4,11)<eq\f(5,8),故选项A不正确;对于B,物理类的学生中选择地理的比例为eq\f(100,220)=eq\f(5,11),历史类的学生中选择地理的比例为eq\f(45,80)=eq\f(9,16),因为eq\f(5,11)<eq\f(9,16),故选项B不正确;对于C和D,根据已知数据可得2×2列联表如表:选生物不选生物总计物理类115105220历史类354580总计150150300所以χ2=eq\f(300×115×45-105×352,150×150×80×220)=eq\f(75,44)≈1.705<2.706,没有90%的把握认为选择生物与选考类别有关,故选项C正确,选项D不正确.12.(多选)有两个分类变量X,Y,其列联表如表所示.XY总计Y1Y2X1a20-a20X215-a30+a45总计155065其中a,15-a均为大于5的整数,若有95%的把握认为X与Y有关,则a的可能取值为()A.6B.7C.8D.9答案CD解析根据a>5且15-a>5,a∈Z,知a可取6,7,8,9.由表中数据及题意,得χ2=eq\f(65×[a30+a-15-a20-a]2,20×45×15×50)=eq\f(13×13a-602,20×45×3×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论