版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.2.已知向量,,当时,()A. B. C. D.3.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.4.设集合,,若集合中有且仅有2个元素,则实数的取值范围为A. B.C. D.5.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.46.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.7.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.78.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或9.函数的值域为()A. B. C. D.10.下列函数中,图象关于轴对称的为()A. B.,C. D.11.已知集合,则等于()A. B. C. D.12.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知a,b均为正数,且,的最小值为________.14.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.15.若向量与向量垂直,则______.16.双曲线的焦点坐标是_______________,渐近线方程是_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值.18.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.19.(12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.21.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;22.(10分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.2、A【解析】
根据向量的坐标运算,求出,,即可求解.【详解】,.故选:A.【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.3、B【解析】
列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.4、B【解析】
由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.5、A【解析】
则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.6、C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题7、B【解析】
在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.8、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.9、A【解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,,,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.10、D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.11、C【解析】
先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.12、B【解析】
设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,,当时,,当且仅当时取等号,此时,,点在以为焦点的椭圆上,,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.14、【解析】
基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率.【详解】解:袋中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,∴其中三种颜色的球都有的概率是p.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.16、【解析】
通过双曲线的标准方程,求解,,即可得到所求的结果.【详解】由双曲线,可得,,则,所以双曲线的焦点坐标是,渐近线方程为:.故答案为:;.【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因为BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如图,由已知可得,,则,则三角形BCD为锐角为30°的等腰三角形.则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE⊥平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角CBFD的平面角,则60°.则,,则.在直角梯形BDEF中,G为BD中点,,,,设,则,,则.,则,即CF与平面ABCD所成角的正弦值为.(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),则所以取x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.18、(1)(2)证明见解析【解析】
(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,.(2)设数列的前n项和为,则两式相减得,所以,设则,所以.19、(1)(2)填表见解析;不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系【解析】
(1)利用频率分布直方图小长方形的面积和为列方程,解方程求得的值.(2)根据表格数据填写列联表,计算出的值,由此判断不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系.【详解】(1)由题意,解得.(2)由频率分布直方图可得不擅长冰上运动的人数为.完善列联表如下:擅长不擅长合计男性203050女性104050合计3070100,对照表格可知,,不能在犯错误的概率不超过0.01的前提下认为擅长冰上运动与性别有关系.【点睛】本小题主要考查根据频率分布直方图计算小长方形的高,考查列联表独立性检验,属于基础题.20、(1);(2)见解析【解析】试题分析:(I)由题意可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论