版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.2.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.3.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.4.设为虚数单位,为复数,若为实数,则()A. B. C. D.5.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A. B.2C. D.6.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.7.圆心为且和轴相切的圆的方程是()A. B.C. D.8.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件9.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要10.已知函数,则不等式的解集为()A. B. C. D.11.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.12.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为椭圆在第一象限上的点,则的最小值为________.14.已知直线被圆截得的弦长为2,则的值为__15.已知,,分别为内角,,的对边,,,,则的面积为__________.16.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若,,,求证:.18.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.19.(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.20.(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.21.(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.22.(10分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.2、A【解析】
由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.3、A【解析】
先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.4、B【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题5、A【解析】
先根据已知求出原△ABC的高为AO=,再求原△ABC的面积.【详解】由题图可知原△ABC的高为AO=,∴S△ABC=×BC×OA=×2×=,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.6、B【解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.7、A【解析】
求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.8、D【解析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.9、B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。10、D【解析】
先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.11、D【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.12、B【解析】
先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值.【详解】解:设点,,其中,,由,,,可设,导数为,由,可得,可得或,由,,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值,且为,则的最小值为1.故答案为:1.【点睛】本题考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题.14、1【解析】
根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【详解】解:圆的圆心为(1,1),半径,
因为直线被圆截得的弦长为2,
所以直线经过圆心(1,1),
,解得.故答案为:1.【点睛】本题考查了直线与圆相交的性质,属基础题.15、【解析】
根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.16、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.18、(1)证明见解析;(2)证明见解析;【解析】
(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.19、(1)证明见解析(0,2);(2)存在,理由见解析【解析】
(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OA⊥OB,求出b,即可知直线过定点(2)由斜率公式分别求出,,联立直线与抛物线,椭圆,再由根与系数的关系得,,,代入,,化简即可求解.【详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,,故所以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,,即存在常数满足题意.【点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题.20、(1);(2)证明见解析.【解析】
(1),分,,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(1)知:若时,.若,则,即成立.将换成,得成立,即,以此类推,得,,上述各式相加,得,又,所以.【点睛】本题考查利用导数研究函数恒成立问题、证明数列不等式问题,考查学生的逻辑推理能力以及数学计算能力,是一道难题.21、(1)(2)证明见解析【解析】
(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.(2)由(1)可知为最小值,则构造函数(),求导借助基本不等式可判断为减函数,即可得,即则有,由已知可得,由,可知,因为时,为增函数,即可得证得结论.【详解】(1)().因为,所以,令得,,且,,在上;在上;所以函数在时,取最小值,当最小值为0时,函数只有一个零点,易得,所以,解得.(2)由(1)得,函数,设(),则,设(),则,,所以为减函数,所以,即,所以,即,又,所以,又当时,为增函数,所以,即.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人版权登记委托合同范本2篇
- 二零二五版校园热水系统安全运行保障采购合同范本下载2篇
- 二零二五版个人二手房购房合同与产权过户指导书2篇
- 二零二五年个人独资企业股权转让协议书与合同变更程序
- 导热油锅炉施工方案
- 二零二五年度互联网+项目立项合同3篇
- 二零二五年度物联网技术应用个人劳务合同4篇
- 智能交通系统建设服务合同
- 股权转让合同补充协议书
- 医院管理中的合作伙伴关系
- 餐饮行业优化食品供应链管理计划
- 微信小程序用户服务协议和隐私政策-带目录
- 复工复产六个一方案模板
- 江苏省徐州市、宿迁市2025年高三下期末测试化学试题含解析
- 要分手费的分手协议书(标准)
- 2024夏季广东广州期货交易所招聘高频难、易错点500题模拟试题附带答案详解
- 浙江省2024年高考化学模拟试题(含答案)2
- 2024新人教七年级英语上册 Unit 2 Were Family!(大单元教学设计)
- 碳排放管理员 (碳排放核查员)技能考核内容结构表三级、技能考核要素细目表三级
- DB12T 1339-2024 城镇社区公共服务设施规划设计指南
- 电竞赛事策划全解析
评论
0/150
提交评论