创新药物设计与开发课件_第1页
创新药物设计与开发课件_第2页
创新药物设计与开发课件_第3页
创新药物设计与开发课件_第4页
创新药物设计与开发课件_第5页
已阅读5页,还剩95页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化学与生物学的桥梁创新药物设计与开发一、概述药物(Drugs):

Chemicalsthatpreventdiseaseorassistantinrestoringhealthtodiseasedindividuals.药物化学(Medicinalchemistry):Branchofsciencethatprovidesthesedrugseitherthroughdiscoveryorthroughdesign.古代:经验(神农尝百草)2个世纪前:天然产物改造上个世纪:化学合成当代药物化学:“多学科协同作战”药物发展的历史概述19世纪前,对人体正常和反常机能的认识非常落后,不能提供理解药效最起码的基础知识;同时,将疾病和死亡看得神圣,用一种独裁式的教条来处理。临床实践往往服从权威,而忽略显而易见的事实两个荒唐的例子:1765年Lind发现金鸡纳树皮(cinchonabark)能治疗疟疾,并为此制定了一个治疗方案。但是,到1804年Johnson断言这一方案不安全,只能在退烧后使用;因此,他建议在疟疾发病的早期用大剂量的甘汞(氯化亚汞)治疗-这一致命的方案被用了40年。所谓的制定“科学”治疗疾病的尝试在不断地进行着,但多数情况比纯经验的方案更糟。JameGregory(1735-1821)提出了对抗疗法(allopathy),他制定了一个方案,包括放血、催吐(让病人呕吐)、吃泻药,直到病症被压下去。许多病人死于对抗疗法。这种状抗一直维持到19世纪初,Hahnemann提出顺势疗法(homoeopathy):同类治疗同类(likecureslike)-以毒攻毒药物的活性可以通过稀释加强(activitycanbeenhancedbydilution)Hahnemann曾建议将药物稀释成1:1060,这显然式荒谬的,因为这样的药物浓度相当于在海王星大小的容器内只有一个药物分子。医用药物(DruginMedicine)药物是多年来治疗疾病的主要手段,相当长的一段时期内天然产物(主要是植物)在治疗疾病中起主导作用,直到1920年,合成化合物用于治疗疾病-现代制药工业开始。现在,天然产物依然是药物的主流,但多数药物还是合成药物。这些药物遵循着同样的药理学原理近年来,生物技术产品,如抗体、酶和一些调节蛋白(激素、生长因子等)正在成为治疗制剂的另一来源。尽管这些生物技术药物的生产方法不同于化学药物,但他们遵循着同样的药理学原理。基因和细胞疗法还处在“发展”阶段,他们将是药物研究的新领越。主导人工基因的设计、传输、控制基因导入细胞的原理不同于传统药物,遵循着新的药理学原理。这不是本课程的内容。许多世纪以来,人们化了很大的精力从草药中寻找治疗疾病的药物。19世纪,由于分析和合成化学的发展,标志着药物研究的重大转变,一些生物碱被纯化,一些简单的有机分子,如乙酰水杨酸(acetylsalicylicacid,阿司匹林)被合成。然而,真正现代药物的历史应从1930年代磺胺(sulfonamide)药物用于抗菌开始。今天,相当一部分疾病能用化学药物治愈或控制-细菌和真菌感染、肺炎、肠胃炎和心血管疾病,一部分癌症和一些白血病。20世纪初,医生必须记住所有药的性能,今天没有人能记住所有药的特性,现有用于治疗疾病的药物大约有6000-8000种。药物发现的历史可以追寻到远古时期,公元前2100年,亚美尼亚人用黏土做成片剂治疗疾病,他们用楔形文字写成了两栏型建议书。荷马时代的希腊,医生用藜芦(hellebore)和小扁豆肉的汤治疗疾病。医药之父希波克拉底(Hippocrates,约公元前460-约公元前370)用油和草药汤剂治疗疾病伽林(Galen,古希腊名医及有关医术的作家,解剖学家、内科医生。他的理论奠定了欧洲医学的基础直至文艺复兴时期)也用类似的方法治疗疾病。草药的药用性质和毒性逐渐被认识。普卢塔克(Plutarch,古希腊传记作家和哲学家。他写的希腊罗马名人比较列传,曾被莎士比亚用在他的古罗马戏剧中)描述了马可.奥里利乌斯(MarcusAurelius,罗马皇帝兼斯多葛派哲学家,121-180)的军队的士兵吃了芜箐后全部死亡,芜箐含有乌头碱。13世纪,威尼斯培养了第一批药剂师。中世纪,人们根据发源于希腊、发展于阿拉伯的方法选取药材,并且开始在园林中种植草药。1635年,路易斯三世在他的医生的建议下,建立了专门种植草药的皇家植物园,进行药物的理论和实践研究。人们逐渐地掌握了比较精确的草药治疗方法,1882年法国出了一部药典,其中描述了52中草药的性质。西药发展的历程谈到西药发展的历程,不得不谈一谈19世纪现代化学,特别是有机化学发展的历史拉瓦锡(1743-1794,法国化学家,氧发现者)奠定了现代化学基础,到19世纪化学获得了飞速发展,特别是分析化学和有机化学。1845年Kolbe合成了乙酸,1856年Berthelot合成了甲烷,奠定了合成化学基础生药学(pharmacognosy)被生理化学代替-目的不是从全世界大量的植物中寻找药剂,而是从特定的药用植物中发现活性成分,植物化学得到发展。1803年,德国药剂师FriedrichSertürner从鸦片中提取获得了吗啡,这是第一个获得的纯生物碱。1816年,法国药剂师PierrePelletier从吐根树中提取获得吐根碱(emetine,用作催吐剂,祛痰剂和杀阿米巴剂)。1819年Pelletier与同事JosephCaventou合作,获得了纯的番木鳖碱(strychnine)、.咖啡因(caffeine)、奎宁(quinine);1820年他们又获得秋水仙碱(colchicine)。1828年,获得了烟碱(nicotine),1832年可待因(codeine,自鸦片中提取的碱质,用以镇痛,镇咳,催眠等)和阿托品(atropine)。1875年,英国医师和植物学家WilliamWithering用毛地黄(foxglove)治疗浮肿,早在1799年Ferriar发现毛地黄对心脏病有治疗作用;Homolle和Quevenne(1840)、Nativelle(1869)、Arnaud(1888)分别分离从毛地黄中分离得到了糖苷。1860年,Niemann分离获得了可卡因(cocaine),并发现能麻木他的舌头;1879年VonArep发现皮下注射可卡因有麻醉作用,1884年Hall将其用于拔牙麻醉;1885年Halstead用于研究神经阻滞作用。古代,毒扁豆(Calabarbean)被非洲人用于检验是否有罪-如果吃了以后呕吐,就认为征兆消失,被审判者无罪。1864年分离获得了毒扁豆碱。1875年,从麦角蘑菇分离到麦角素(ergotinine)。1888年,Bayer公司的制药部门上市了镇痛药乙酰对氨苯乙醚(非那西汀)和第一个安眠药索佛拿,1899年上市了抗炎/镇痛药阿司匹林(aspirin,乙酰水杨酸)。1907年,PaulEhrlich合成了撒尔佛散(salvarsan),引入了化学治疗的概念。撒尔佛散是治疗梅毒的特效药,它使Ehrlich获得1908年诺贝尔医学奖。Ehrlich(1854-1915)德国细菌学家,他是横跨19世纪和20世纪最伟大的药学家之一,首次引入受体的概念,对化合物进行结构改造,开创了现代药物研究的新局面。我们将还会介绍他关于受体的工作。在受体方面作出贡献的还有ernard(1813-1878,法国生理学家)、Pasteur(1822-1895,法国化学家、细菌学家)、Koch(1843-1910,德国细菌学家,医学家,结核菌、霍乱菌发现者,曾获1905年诺贝尔生理学-医学奖)、Lister(1827-1912,英国外科学家,近代无菌手术法的确立者)。尽管发生了两次世界大战,制药工业依然发展蓬勃。1889年在巴黎世界博览会上,Basel制药公司展出了一系列药物:抗败血症药物、抗风湿药物、洋地黄和生物碱。并且,国际上第一次在制药工业中建立类似大学和研究所的研究部门。这种模式非常有效,主导了20世纪的药物研究。1900-1934年,一系列药物上市:抗寄生虫药物、巴比妥酸(安眠药)、有机汞制剂(利尿)、高碘化合物(X-光造影剂,用于诊断)。同一时期,发现了一系列内源性物质(endogenous):神经递质、维生素、胆固醇、激素,并对部分化合物进行了全合成。1933年,Mietzsch、Klarer、Domagk等发明了磺胺类抗菌药物,大大降低了感染疾病引起的死亡率,标志着药物研究一个新到代的开始。1940年代是抗生素时代,抗生素的发展超过了磺胺药物,典型的代表有青霉素(penicillin)、四环素(tetracycline)、链霉素(streptomycin),结束了肺结核危害人类的历史。在此期间,发明了20余种治疗心血管疾病、抗真菌感染和部分癌症、抗炎药物。1950年代是精神系统药物时代。1950年,发现了镇定剂氯丙嗪(chlorpromazine);1954年发现了安定药安宁(mepromazine,氨甲丙二酯);1960年,发现了另一类安定药利眠宁(chlordiazepoxide,甲氨二氮草)-第一个苯并二氮(benzodiazepine)类药物。1960年,还发现了两类抗抗抑郁病药-单胺氧化酶(monoamineoxidase)抑制剂和丙咪嗪,人们终于有了抗精神分裂症和抗抑郁有用药物。1950-1960年代发展比较慢但激动人心的领域是心血管药物。1952年发现了利血平(reserpine),1960年发现了降血压药甲基多巴(methyldopa)。1960年代末70年代初是心血管药物的黄金时代-b受体阻滞剂、钙拮抗剂、抗高血压药物相继发现。可以治愈和控制的疾病霍乱(cholera)白喉(diphtheria)肺炎(pneumonia)丹毒(erysipelas)麻疹(measles)流行性脑脊髓膜炎(meningococcalmeningit)百日咳(pertussis)瘟疫(plague)小儿麻痹症(poliomyelitis)风湿热(rheumaticfever)猩红热(scarletfever)天花(smallpos)葡萄球菌败血病(staphylococcalsepticaemia)亚急性细菌心内膜炎(subacutebacterialendocarditis)肺结核(tuberculosis)伤寒(typhoidfever)维生素缺乏(vitamindeficiency)没有根本解决方案的疾病可以缓解的疾病哮喘(asthma)糖尿病(diabete)心脏病(hertdisease)精神分裂症(schizophrenia)梅毒和其他性病(syphilis,venereal)艾滋病(AIDS)老年性痴呆(Alzheimer’sdisease)关节炎(Arthritis)癌症(cancer)硬化病(cirrhosis)感冒(commoncold)生殖疱疹性咽峡炎(genitalherps)亨廷登硬化症(huntingdon’ssclerosis)流行性感冒(influenza)多样的硬化症(multiplesclerosis)帕金森症(parkinson’sdisease)肺部纤维化(pulmonaryfibrosis)老龄化问题(Senility,geriatrin)没有根本解决方案的疾病阿司匹林-一个神奇药物的历史柳树(Willow)喜爱生长在潮湿的土壤里,其枝叶总是往地面长。人们发现,生活在柳树环境中到人不易发烧。1763年6月2日,英国牧师EdwardStone在伦敦皇家学会讲了计划:他考虑用柳树叶皮退烧。与会者觉得比较合理,当事有人用秘鲁的金鸡纳树皮泡茶退烧,而来树皮与金鸡纳树皮有同样的苦味。烙印(imprint)学说实际上金鸡纳树皮和柳树皮退不同的烧,金鸡纳树皮退的是疟疾引起的烧。当事人们分不清疟疾和一般的发烧。烙印(imprint)学说,人们推测柳树皮能治疗风湿病,原因是”柳树的枝具有柔性的伸展性”1829年药剂师HLeroux(Vitry-le-Francois)从柳树中分离得到了水杨苷(salicin),实际上是一种水杨酸糖,后来人们从绣线菊属的灌木的花中分离得到了同样的物质。Paenstecher(瑞士)、Cahour(法国)和Procter(美国)将水杨苷转化为醛,再转化为水杨酸。1853年法国斯特拉斯堡的Gerhardt将水杨苷转化为乙酰水杨酸。1853年,一个小孩患关节风湿病,服用水杨酸钠后高烧和关节痛消失。1893年,Bayer公司的FelixHoffman首次全合成了乙酰水杨酸,开始了大量生产乙酰水杨酸的历史。乙酰水杨酸给了一个商品名阿司匹林(aspirin=Acetyl+Apirae(meadowsweet的拉丁名))。第二次世界大战后,Bayer公司失去了阿司匹林的拥有权。1983年,全世界生产了3万吨阿司匹林,制成了750亿片阿司匹林片剂。一个偶尔的发现,产生了一个神奇药物。有时药物的副作用也会导致好药的发现,伟哥就是一个典型的例子。09八月2024new药物设计17第一阶段是古代传统医学的积累,用“神农尝百草”的方式发现治疗疾病的药物,可以看成是直接用人体作筛选模型,从自然界中发现药物。我国的传统中药就是这样发展的;第二阶段19世纪末20世纪初,用传统化学和药理学方法,研究特定分子对整个生物体的影响,用这种方法发现了许多疗效显著的药物,典型的例子有阿斯匹林(Aspirin)和安定(Valium);第三阶段是生物化学和分子生物学的发展,促进了蛋白质的分离、结构表征和靶点的确证,出现了药物筛选方法,即用随机筛选或合理药物设计方法寻找与靶标蛋白结合的分子作为发展药物的候选物。在此期间,计算机辅助药物分子设计得到了前所未有的发展,成为创新药物研究的实用手段之一。用这类方法发展的典型药物有近年上市的HIV蛋白酶抑制剂;09八月2024new药物设计18第四种途径(第四阶段)是利用遗传学方法研究生命的基本结构(BuildingBlocker)和疾病产生的根源,寻找和确证药物新靶点,表达相应的蛋白质,发展筛选方法,寻找与靶标蛋白特异性结合的分子,然后用进行传统药理学测试、临床前和临床研究。抗癌药物Herceptin和Gleevec是用这一策略发展的上市新药的典型例子;第五种途径?

化学基因组学1、创新药物研究现状医药:全球经济发展的重要支柱产业2200亿美元1997年3300亿美元2000年6000亿美元2010年世界医药市场的总销售额从整体来说,我国的医药产业还缺乏自己的知识产权,生产的药物品种多数属仿制之列,产品附加值低,医药产业尚未拿到走向世界的“通行证”,在国内外市场的激烈竞争中,步履维艰。我国医药产业面临严峻的形势和挑战低水平重复现象严重,1996年批准新药申请307项,其中50%以上是重复品种改变剂型。同一品种多家申报,最多者达到280家。另一方面,“洋药”大举涌入,挤占国产药品市场,控制了一部分民族医药工业。“如果政府不干预,中国的医药市场将在五年内完全被国际医药大公司操纵!”我国目前医药工业生产的药品大约97%是仿制外国的品种;中药出口额仅占国际中草药市场的3%左右;医药产业总体经济效益低下,难以承受国际竞争的强烈冲击。造成这种状况的一个关键原因,是缺少具有自主知识产权的“重磅炸弹”式的创新药物(一般以年销售额大于5亿美元为标准)。这种状况如不采取有力措施加以改变,势将威胁我国医药产业的生存和发展,最终影响到我国的经济安全和社会稳定!商品名一般名公司名适应症作用机理02年销售额(亿美元)LipitoratorvastatinPfizer降低胆固醇HMG-CoA抑制剂86ZocorsimvastatinMerck降低胆固醇HMG-CoA抑制剂62Losec/PrilosecomeprazoleAstraZeneca治疗溃疡质子泵抑制剂52ZyprezaolanzapineEliLilley抗精神病神经系统受体拮抗剂40NorvascamiodipinePfizer治疗高血压钙拮抗剂40Erypo/ProcritEpoetin-

J&J(Amgen)红细胞生成素

-人体赤蛋白38Ogastro/PrevacidLansoprazoleTAPPharma治疗溃疡质子泵抑制剂36Seroxat/PaxilparoxetineGSK抗抑郁SSRI33CelebrexcelecoxibPfizer抗炎COX-2抑制剂31ZoloftsertralinePfizer抗抑郁SSRI29前10名药物销售总额447国际排行前十名药物近期国外的权威机构根据国际药物的销售情况,对药物研发技术进行了评估。发现从1996年至今,美国FDA批准上市的新药逐年下降,从1996年的53个下降到2002年的17个。09八月2024new药物设计28FailearlyStrategy?!09八月2024new药物设计29I、新药从发现到上市的一般过程(药物设计、定向合成、对收集的化合物、组合化学库天然产物)筛选初步生物活性评价先导化合物结构鉴定结构类似物的合成生物活性评价体外代谢研究CADD研究先导化合物From

Hit

to

Lead(2~4years)09八月2024new药物设计30先导化合物第二、三轮活性评价制剂稳定性研究代谢和药物动力学研究毒理学研究:急性、亚急性毒性、生殖毒性等等。新药研究档案建立Pre-clinicStudy(1~3years)09八月2024new药物设计31I期临床II期临床III期临床慢性毒性研究注册备案新药管理ClinicStudy(3-6years)新药研究档案建立09八月2024new药物设计32新药上市注册后事务活动(批准注册)DrugDevelopment(2~3years)注册备案新药管理我国几乎缺乏具有自主知识产权的药物靶标发现并拥有药物新靶标是产生“重磅炸弹”式创新药物的源头候选物候选物化合物筛选I期试验II期试验III期试验化合物创新药物体系新药药物靶标09八月2024new药物设计34

TargetProteinsandDrugs

NumberofDrugs:SteepIncreaseExpected09八月2024new药物设计35例如:胃组胺H2受体的发现治疗胃溃疡特效药:西咪替丁雷尼替丁法莫替丁,等等多年名列世界药物销售额榜首,1996年仅在美国销售额就达18亿美元,1999年达30亿美元药物作用新靶标的研究新的药物作用靶点一旦被发现,往往成为一系列新药发现的突破口。已知治疗性药物靶标的分类NatureBiotechnology,200109八月2024new药物设计37人类基因组计划09八月2024new药物设计38Impactof“–ome”and“–omics”Genome GenomicsStructuralgenome structuralgenomicsProteome ProteomicsStructuralproteome structuralproteomicsRNAome RNAomicsMetabome MetabomicsTranscriptome TranscriptomicsChemogenome Chemogenomics……

……Unknome Unknomics09八月2024new药物设计39药物发现前景光明Genomicsprovidinganopportunitytoidentifythebestdrugdiscoverytargetsthatwillleadtothebestsmall-moleculedrugsformanymajordiseases.Combinatorialchemistryandhigh-throughputscreening(HTS)offeranunimaginablylargeanddiverse‘chemicallandscape’.09八月2024new药物设计40

2-3年3-4年

随机筛选10,000~20,000化合物药物候选物临床前研究临床研究(phaseI,II,III)上市2-3年2-3年周期长:10-12年耗资大:3.50-5.50亿美元风险高:7个上市新药仅1个盈利?先导结构及优化09八月2024new药物设计41分子生物学结构生物学基因组、蛋白质组组合化学和高通量筛选计算机辅助药物设计生物信息学与化学信息学(数据库学)化学生物学化合物药物候选物加速n.b.Innovation:translationofknowledgeinto

products/services09八月2024new药物设计42GeneExpressAnalysisGenomeViewing3-DStructurePredicationorDeterminationProtein-LigandInteractionAnalysisDatabaseMiningDatabasesCNPDACD,MDDRSynthesisandIsolationMediChemNaturalProductsCombiChemMolecularBiologyStructuralBiologyBioinformaticsChemoinformaticsDatabicsHitsorLeadsHTSHighThroughputChemistryandScreening09八月2024new药物设计43致病基因编码蛋白三维结构测定与预测活性位点先导结构设计与优化药物候选物药新靶标确认药物发展09八月2024new药物设计44基因组(化学、结构):药物作用新机理、新靶点.组合化学:大量化合物,高通量筛选

高性能计算:生物信息学、化学信息学、药物设计.药物研究的核心技术09八月2024new药物设计45化学基因组学与新药发现09八月2024new药物设计46化学基因组学(ChemicalGenomics,Chemogenomics)功能基因组研究一种有效途径创新药物研究的第五种途径09八月2024new药物设计47一系列化合物一个靶标传统药理学化学基因组的雏形产生于1994年,TimMichison提出了药理遗传学(PharmacologicalGenetics)概念,初衷是想用小分子作为探针,研究药理事件。09八月2024new药物设计48化学生物学一个化合物一系列靶标蛋白StuartSchreiber提出化学遗传学(ChemicalGenetics)思想(现在有人也称化学遗传学为化学生物学(ChemicalBiology));化学生物学的主要目标是为化学家和生物学家设置的:发现与基因表达蛋白特异性结合的小分子化合物,然后反过来利用这些化合物作为工具“药物”,进行功能基因组、细胞调控和药理学研究,为发现新药先导结构奠定基础。09八月2024new药物设计49化学基因组学将DNA芯片或蛋白质芯片与创新化学合成结合起来,进行集群式高通量筛选方法,寻找靶点蛋白-小分子结合(作用)对(protein-smallmoleculeinteractionpairs);所谓集群式的高通量筛选,是针对靶标蛋白阵列(Array)筛选化合物样品库,而不是针对一个靶标进行高通量筛选。这些新方法可以发展成针对基因组的筛选方法。09八月2024new药物设计50第一阶段是古代传统医学的积累,用“神农尝百草”的方式发现治疗疾病的药物,可以看成是直接用人体作筛选模型,从自然界中发现药物。我国的传统中药就是这样发展的;第二阶段19世纪末20世纪初,用传统化学和药理学方法,研究特定分子对整个生物体的影响,用这种方法发现了许多疗效显著的药物,典型的例子有阿斯匹林(Aspirin)和安定(Valium);第三阶段是生物化学和分子生物学的发展,促进了蛋白质的分离、结构表征和靶点的确证,出现了药物筛选方法,即用随机筛选或合理药物设计方法寻找与靶标蛋白结合的分子作为发展药物的候选物。在此期间,计算机辅助药物分子设计得到了前所未有的发展,成为创新药物研究的实用手段之一。用这类方法发展的典型药物有近年上市的HIV蛋白酶抑制剂;09八月2024new药物设计51第四种途径(第四阶段)是利用遗传学方法研究生命的基本结构(BuildingBlocker)和疾病产生的根源,寻找和确证药物新靶点,表达相应的蛋白质,发展筛选方法,寻找与靶标蛋白特异性结合的分子,然后用进行传统药理学测试、临床前和临床研究。抗癌药物Herceptin和Gleevec是用这一策略发展的上市新药的典型例子;第五种途径?

化学基因组学09八月2024new药物设计52计算机化学基因组学与新靶点和先导结构的发现09八月2024new药物设计53计算化学与计算生物学09八月2024new药物设计5409八月2024new药物设计55IBM10亿美元1000万亿次/每秒“蓝色基因”专门用于深入研究蛋白质的结构和功能关系、寻找疾病的成因和可能的疗法、研制新药和阐明细菌及病毒的抗药性等。DeepComputingfortheLifeScience09八月2024new药物设计56万亿次计算时代的分子生物医药

OpportunitiesinMolecularBiomedicineintheEraofTeraflopComputing蛋白质与蛋白质和蛋白质与核酸的识别和组装plaqueformationinAlzheimer'stranscriptionfactorfunction大系统,整个功能单元

membraneproteins,signaltransduction,metabolicpathways,viruscapsids;molecularbasisofdiseaseanddrugaction长时间(微妙)模拟

conformationaltransitions,proteinfolding,ionconductionthroughchannels结合量子力学和分子力学培养计算生物学家09八月2024new药物设计57WhyRunLargeScaleMDSimulations?Threedifferentconformationalstatesofnuclearreceptorligand-bindingdomains

H12payakeyeffectbyconformationchangePeroxisomeProliferatorActivatedReceptor(PPAR

)09八月2024new药物设计58MolecularDynamicStudyHIV-1RTConformationalMotions

Open/Close09八月2024new药物设计59BindingMechanismHypothesis09八月2024new药物设计60分子对接方法锁匙原理的直接应用虚拟筛选发现新先导结构的有效途径09八月2024new药物设计61Attheinsilicolaboratory,

researchersuseComputationalMethodstoevaluateVirtuallibraries(databases)againstVirtualreceptors(targets)Speedingupdrugdiscovery09八月2024new药物设计62T.N.Doman,etal.,J.Med.Chem.,2002,45:2213-21VSvs.HTSDomanetal.comparedtheperformanceofrandomhighthroughputscreening(HTS)andmoleculardockinginsearchesforinhibitorsof(proteintyrosinephosphatase1BPTP1B)—atargetfortype2diabetes.Theresultindicatedthatdockingenrichedthehitrateby1,700-foldoverrandomscreening.09八月2024new药物设计63Lielal.(ProthericsMolecularDesignLtd.)demonstratedthehighefficiencyofdockinginrankinghitsbytheirDockCrunchprojectagainstestrogenreceptor.09八月2024new药物设计64

WHY

HighThroughput

VirtualScreening?有机化学发展一百多年来,人们合成和从天然动植物中提取的有机化合物约有1600多万个,其中进行过药物筛选的化合物不超过1%,从中发现了5000多个药物。这1600多万个化合物是一个新药发现的丰富资源。但是如果针对不同的靶点筛选所有的化合物,所花费的资金和时间是不可想象的。如果平均每个化合物收集10mg样品花费200美元,收集1600多万个样品需花费32亿美元;平均筛选一个化合物需花费1美元(最节约的高通量筛选),筛选20个模型需要3.2美元。高通量筛选平均每天筛选10万个化合物,筛选20个模型需10年时间。只有大规模高通量虚拟筛选方法能解决这一问题。09八月2024new药物设计66>16MillionOrg.Mols.~7000Drugs~500targets>5000targets20~30kDrugs?AMineofLeads1%WhyVS?09八月2024new药物设计67结构测定药物设计有机合成药理研究抑制剂活性1997199819992000100

M7

M14nM9nM研究进展以计算机药物设计为龙头,多学科紧密合作的现代创新药物研究的新模式新药发现化合物石杉碱甲结构生物学09八月2024new药物设计68ProteinDataBank(PDB)SmallMoleculeDatabasesParallel-DOCKHighThroughputScreeninginSilicoAccurateEvaluationofActivityfortheHitsAFM-EGONWChemLigand-ReceptorBindingSimulationwithMDandQMMolecularDynamicsCombiBuildVirtualLibraryDesignChemistryandBioassayASystemforNewDrugDiscoveryandDesign09八月2024new药物设计69StructuralgenomicsBioinformaticsChemoinformaticsDatabaics从天然产物中发现线索我们能做什么?09八月2024new药物设计70研究的靶标(192+Genomics)TK(anti-cancer)COX-1&COX-2(anti-inflammation)AChE,-Secretase(anti-Alzheimer)K+IonChannel(anti-arrhythmia)MMPsGPRs(CCRs)CD54,GLP-1(anti-diabetes)PPARg09八月2024new药物设计7109八月2024new药物设计72降糖药物CNPDTCMofAnti-diabetes09八月2024new药物设计73PDBCNPDP1P2P3….PnK11K12K13….P1nK21K22K23….P2n.........…....Km1Km2Km3….PmnC1C2...Cm矩阵结构数据库间的交叉融合好的计算方法-Parallel-DOCK-Parallel-AutoSock超级计算机-神威、曙光充分利用天然产物生物多样性和基因组序列信息,同时发现靶标和先导09八月2024new药物设计74P1P2P3….PnK11K12K13….P1nK21K22K23….P2n.........…....Km1Km2Km3….PmnC1C2...Cm类药性数据库天然产物NP-Like库虚拟筛选实验验证基因小分子

PDB结构基因组序列+高通量结构预测09八月2024new药物设计75K11K12K13….P1nK21K22K23….P2n.........…....Km1Km2Km3….PmnC1C2...Cm作用途径TCM成分活性化合物主要靶点代谢功能P1P2P3….Pn药物基因组蛋白质组中药活性成分作用途径—生物信息学、化学生物学研究09八月2024new药物设计76中草药有效成分筛选新模式-配体“垂钓”技术建立09八月2024new药物设计77中草药有效成分传统获得方法分离纯化筛选鉴定造成大量浪费,从总体上说,效率低下。09八月2024new药物设计78PPAR

RawIsolationLigandFishingSystemLigand-receptorscomplexesBufferdissociationLC-MSCNPD,LigandIdentification4Ki<nM09八月2024new药物设计79DiscoveringAgonistsofPeroxisomeProliferatorActivatedReceptor(PPAR

)09八月2024new药物设计8009八月2024new药物设计8109八月2024

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论