模糊数学在实际生活中的应用_第1页
模糊数学在实际生活中的应用_第2页
模糊数学在实际生活中的应用_第3页
模糊数学在实际生活中的应用_第4页
模糊数学在实际生活中的应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅谈模糊数学及在实际中的一些应用摘要:美国数学家查德早在1965年发表论文《模糊集合》,标志着模糊数学的诞生。这门新兴学科的产生使得心理学、语言学等过去与数学不相关的学科能够用数学化进行处理和描述,大大地扩展了数学的应用范围。目前,模糊数学体系已根本形成。系统学科的开展需要促使模糊数学的产生,在多变量的大系统中,模糊性与精确性构成了一复杂的矛盾体,模糊数学成为描述模糊信息强有力的数学工具。在深入研究中发现,在决策对象与约束条件较为模糊的情况下,将模糊数学理论应用于决策研究,便成为模糊决策技术工具,大大降低了决策研究的难度系数,从而获得更好的决策结果。本次研究主要阐述模糊数学的产生及根本理论,从而分析模糊数学在考古、医学、模糊识别等领域的实际运用。关键字:模糊数学;开展;应用;Abstract:AmericanmathematicianChadasearlyasin1965published"fuzzyset",marksthebirthoffuzzymathematics.Thegenerationofthisnewdisciplineinthepastsuchaspsychology,linguisticsandmathematicalunrelateddisciplinescanusemathematicalprocessinganddescription,enlargestheapplicationrangeofthemathematics.Atpresent,fuzzysystemhasbasicallyformed.Systemsubjecttopromptthedevelopmentoffuzzymathematics,inmultivariablesystem,fuzzinessandaccuracymakeacontradictionofthecomplex,fuzzymathematicstodescribefuzzyinformationpowerfulmathematicaltool.Foundinthestudy,objectsandconstraintsinthedecisionundertheconditionofrelativelyfuzzy,fuzzymathematicstheorywasappliedtothedecision-makingresearch,becomefuzzydecisiontechnologytools,greatlyreducedthedifficultycoefficientofdecision-makingresearch,inordertogainbetterdecisions.Thisresearchmainlyelaboratedandthebasictheoryoffuzzymathematics,sofuzzymathematicalanalysisinarchaeology,medicineandthepracticalapplicationoffuzzyrecognitionandotherfields.Keywords:fuzzymathematics;Development;Application模糊数学的产生和开展经典集合论说明,集合是由确定的元素组成,元素本身具有确定性,且元素与集合的关系也是十清楚确的,要么属于,要么不属于,不存在这之间的情况。但是,现实生活中,很多事物具有模糊性、不确定性,这样的集合理论局限于模糊概念的处理。数学家们为了能够解决模糊概念的问题,经过苦苦专研,最终美国控制论专家扎德教授创立了模糊数学,并提出了“模糊数学集合论”。目前,模糊数学体系已根本形成。系统学科的开展需要促使模糊数学的产生,在多变量的大系统中,模糊性与精确性构成了一复杂的矛盾体,模糊数学成为描述模糊信息强有力的数学工具。模糊数学的历史已有22年之久,这门新兴学科的开展迅速,将心理学、语言学等过去与数学不相关的学科联系起来,大大地扩展了数学的应用范围。随着模糊数学理论研究和开展,模糊数学的应用也得到了很大的扩展,广泛应用于心理学、社会学、生态学、语言学等学科领域。在深入研究中发现,在决策对象与约束条件较为模糊的情况下,将模糊数学理论应用于决策研究,便成为模糊决策技术工具,大大降低了决策研究的难度系数,从而获得更好的决策结果。模糊数学的根本理论及其方法扎德在论文“FuzzySets”正视了经典集合论中元素与集合的关系:要么属于,要么不属于。[3]而生活中事物之间的关系并不是“非此即彼”那么简单,具有一定的复杂性和不确定性,因此他提出了“模糊数学”的概念来对事物间的关联进行描述,因此模糊数学的理论便是以模糊集为根底。〔一〕集合及其特征函数1、集合论域E中具有的属性P元素作为一个整体称为集合。〔ⅱ〕集合的运算集合中常用的运算包括:交〔∩〕、并〔∪〕、补2、特征函数对于论域E上的集合A和元素x,如有以下函数:特征函数表达了元素x对集合A的隶属程度。可以用集合来表达各种概念的精确数学定义和各种事物的性质。模糊集合查德以精确数学集合论为根底,推出“模糊集合”的概念,用作表现模糊事物,在模糊集合中建立运算及其运算规律。在模糊集合中,元素与集合的关系不单单只是“属于”或“不属于”,附属条件不再是“0”或“1”,有明确的界限,而是介于“0”和“1”之间,存在过度的元素。1、概念的模糊性许多概念集合具有模糊性,例如:年龄:年轻、年老 成绩:好、差外貌:美、丑 身高:高、矮头发:长、短2、隶属度函数如果一个集合的特征函数不是{0,1}二值取值,而是在闭区间[0,1]中取值,那么是表示一个对象x隶属于集合A的程度的函数,称为隶属度函数。隶属度函数用精确的数学方法描述了概念的模糊性。3、模糊子集①设集合A为集合U的一个子集,x为U中的任意元素,用隶属度函数来表示x对A的隶属程度,那么称A是U的一个模糊子集,记为。模糊子集通常简称模糊集。其中模糊集A是由隶属函数唯一确定,一般将二者看为等同的。②模糊集可以用下式表示1°Zadeh表示法或其中表示对模糊集A的隶属度,称为模糊子集A的支持点,“+”称为查德记号,而不是加号表示求和。例1假设以人的岁数作为论域,单位是“岁”,那么“年轻”,“年老”,都属于U的模糊子集。其隶属函数表示为:=“年轻”(u)=(*)=“年老”(u)=(**)(*)表示:年龄不超过25岁的人,对子集“年轻”的隶属函数值是1,那么表示一定属于这一子集;而年龄超过25岁的人,子集“年轻”的隶属函数值按来进行计算,例如年龄为40岁的人,隶属函数值。同理,由(**)得出:,。模糊数学在实际中的一些应用现实生活中会遇到很多界限不清楚的问题,且不能单纯地规定某种确切的理论去解决,因为问题具有复杂性和模糊性,这时模糊数学理论变成了解决问题的有效工具。运用模糊理论解决模糊问题能有更好的效果。[5]人脑具备较强的处理模糊信息的能力,能在大量的模糊信息中进行识别处理较为复杂的问题。识别模式是计算机系统运用的主要模式,在现代生活中,计算机通过运用模糊技术可以大大地提高系统识别能力,模糊技术的应用也越来越广发。在模糊数学的应用中,经常应用于聚类分析、模式识别和综合评判等方面。〔一〕模糊数学在考古学的应用随着科学的不断进步,考古学也在不断开展,为了保证考古结果的精确性,需要对考古材料进行定量分析,而分析中发现,考古对象所提供的信息便是大量的模糊信息,不确定的因素会影响结果的判断,因此模糊数学的理论与方法也广泛应用于考古研究。虽然在考古研究工作中,我们也需要会用模糊概念的能力去处理一些模糊现象,但处理的大多数问题,都是考古中较为简单的问题,在处理较为复杂的考古研究工作时,比方分类,我们需要一种更为有效的方法进行处理。模糊数学是以严格的数学方法和模糊的对象为根底,能处理并加工模糊信息,并作出确切的判断。因此考古学便利用模糊数学进行研究工作,得出明确的结论。特别是分类问题,文物的分类是一种较为复杂的问题,它的困难在于划分的模糊性,因此分类问题可以尝试用模糊数学方法解决。例2识别岩石的类型1岩石按抗压强度可以分成五个标准类型:很差〔〕、差〔〕、较好〔〕、好〔〕、很好〔〕。它们都是上的模糊集,其隶属函数如下〔图2-1〕10200400600900110018002000图2-1今有某种岩体,经实测得出其抗压强度为上的模糊集,隶属函数为〔图2-2〕。图2-2试问岩体应属于哪一类。计算与的格贴近度,得:按择近原那么,应属于类,即属于“较好”类〔类〕的岩石。〔二〕模糊数学在医学图像处理中的应用目前医学越来越兴旺,医疗技术也越来越先进。医学上主要利用医学图像对病患的病情进行诊断。医学图像也涉及了很多的医疗技术,其中图像分割是将图像中的区域用不同的颜色区分开,且每局部区域颜色的不同代表的意义也不同。图像分割法是以区域的跟踪分割理论为根底开展的。[6]而医学图像是根据病患的图像与医学正常解剖结构图像进行空间位置及对应点的比照,进一步找出病变的位置。但是,在临床试验中发现,医学图像所提供的信息不够全面,医生不能完全把握病患的病情,所以需要将图像经过多种加工方式结合在一起,为医生提供全面的信息,这种技术称为图像融合技术。医学图像经过处理,最终通过观察得出结果的是人,而人本身具有主观意识,所以结果也带有一定的主观性。因此,在处理和分析图像的过程中,必须要结合图像本身体征和人的视觉特性进行分析。而图像成像是一个多对一映射的过程,使得图片难免会有较大的模糊性和不确定性,主要表达为图像灰度以及几何图形结构的模糊性和不确定性。[6]这种不确定性是随机的,如果要用精确数学进行计算模糊性的概率是十分困难的。因此模糊数学走进了医疗技术。通过将模糊数学的理论应用于医学图像的处理中,使得医学图像的模糊性和不确定性降低,这种技术也得到了很好的开展。随着不断地研究和技术整合,模糊数学的分支在图像处理中得到了充分的应用,其运用主要综合了模糊推理系统、模糊聚类算法、典型火灾的模糊识别等几种算法。此技术主要运用在图像滤波的融合,与传统的图像处理方法相比,图像的清晰度和确定性大大增强,促进了医学的进一步开展。随着科学技术的开展,模糊图像处理技术的应用也越来越地广泛。针对模糊数学理论如何增强图像的效果这一问题,首先要考虑的是如何增强图像边缘,模糊数学应用图像处理方法主要是模糊边缘检测方法,通过建立函数关系,增强图像模糊边缘。同时对于灰度的处理主要使条纹比照度增强,从而改变图像的效果强度。在增强条纹比照度所运用的模糊算法主要是通过调整图像灰度,校正图像的直方分布动态范围进行的。增强图像的比照度是分析和处理图像所要考虑的主要问题。增强图像的比照度的模糊算法编制了一个映射,从空间域经过一个局部算子映射到模糊域,从而通过凸函数使得像素之间的差异扩大。[8]将图像局部的比照度定义成像素的平均值或者像素的绝对值,最终,图像经过一系列处理和模糊算法在通过映射回到空间域,图像便完成了提升的经历。〔三〕模糊模式识别的应用在生活中,我们处理问题时,会做出预测和判断,但这往往基于问题确实定条件和不确定信息的研究。如:疾病的诊断、文物的鉴定、电路的故障等一些列问题都离不开分析,而我们需要根据获得的信息判定研究对象的类型,解决这一类型的问题称为“模式识别”。传统的模式识别问题,除了根据统计方法还用语言进行识别,而这都具有一定的局限性和模糊性,影响了问题模式的识别。[9]模糊数学应用于模式识别问题,用模糊集合表示标准类型,使得识别结果更为合理,这种识别模式称为模糊模式识别。其中模式识别主要包括以下三个步骤:第一步:提取识别特征。从识别对象中提取出与识别相关的特征,然后再将不同的特征设成固定的度量值,然后所识别出的特征便有了对应的度量值,注意提出的特征是否合理,这会使识别效果受到影响。第二步:标准类型是模糊集,建立标准类型对应的函数关系,将识别特征与标准类型联系起来。第三步:为确定识别对象所属的标准类型,还应建立识别原那么:要规定不同标准类型间的界值〔最大隶属度原那么〕;如果识别对象超出标准类型的范畴,便采取就近原那么。[10]例3通货膨胀的识别问题通货膨胀状态一般分为以下五个类型:重度通货膨胀;中度通货膨胀;通货稳定;恶性通货膨;胀轻度通货膨胀。用(非负实数域,下同)上的模糊集依次表示以上五个类型,其隶属函数分别为:其中对,表示物价上涨。问时,分别相对隶属于哪种类型?解,,,,由最大隶属原那么可知,时应相对隶属于,即物价上涨时,为轻度通货膨胀;当时,应相对隶属于,即物价上涨时,为恶性通货膨胀。总结在传统的概念里,人们惯于运用精确数学和随机数学对事物的运动规律进行研究。但在解决实际问题的过程中,我们发现我们在分析问题时所获取的大量信息具有模糊性和不确定性,以前人们总将这种不确定性忽略或用自己的方式规定它,但这都影响了最终的结果。现实客观事物的复杂性也决定了事物的很多不确定和模糊性特征,随着计算机、电子设备的更新和开展,人们的需求也越来越高,要想使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论