北京丰台2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第1页
北京丰台2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第2页
北京丰台2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第3页
北京丰台2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第4页
北京丰台2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列交通标志图案是轴对称图形的是()A. B. C. D.2.已知二元一次方程组,则a的值是()A.3 B.5 C.7 D.93.下列图形具有稳定性的是()A.梯形 B.长方形 C.直角三角形 D.平行四边形4.若分式有意义,则的取值范围是()A. B. C. D.5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2C.3 D.46.某厂计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,列出的正确方程为()A. B. C. D.7.下列二次根式中的最简二次根式是()A. B. C. D.8.下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.(π﹣1)0=19.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间10.用计算器依次按键,得到的结果最接近的是()A. B. C. D.11.要反映我市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图 C.折线统计图 D.统计表12.已知(x+y)2=1,(x-y)2=49,则xy的值为()A.12 B.-12 C.5 D.-5二、填空题(每题4分,共24分)13.已知,,则________.14.等腰三角形的一个角是50°,则它的顶角等于°.15.如图,的内角平分线与的外角平分线相交于点,若,则____.16.已知一个三角形的三条边长为2、7、,则的取值范围是_______.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.18.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.0000065毫米,该厚度用科学记数法表示为_____毫米.三、解答题(共78分)19.(8分)老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.20.(8分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.21.(8分)如图,AB∥CD,△EFG的顶点E,F分别落在直线AB,CD上,FG平分∠CFE交AB于点H.若∠GEF=70°,∠G=45°,求∠AEG的度数22.(10分)如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.(1)①当α=15°时,∠CBA'=;②用α表示∠CBA'为.(2)如图2,点P在BD延长线上,且∠1=∠2=α.①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②BP=8,CP=n,则CA'=.(用含n的式子表示)23.(10分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.24.(10分)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、试猜想DE、BD、CE有怎样的数量关系,请直接写出;组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有其中为任意锐角或钝角如果成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若,试判断的形状,并说明理由.25.(12分)中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了位同学,扇形统计图中的,的度数是;(2)请将条形统计图补充完整;(3)估计全校共多少学生参加了球类运动.26.命题证明.求证:等腰三角形两底角的角平分线相等.已知:________________求证:___________________证明:____________________.

参考答案一、选择题(每题4分,共48分)1、B【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.2、B【分析】直接利用加减消元法解二元一次方程组即可.【详解】解:,①+②得:4a=20,解得:a=1.故选:B.【点睛】本题考查了加减消元法解二元一次方程组.3、C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.4、A【分析】根据分式有意义的条件,得到关于x的不等式,进而即可求解.【详解】∵分式有意义,∴,即:,故选A.【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键.5、B【解析】分析:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.解答:解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=2,故选B.6、D【分析】根据计划x天生产120个零件,由于改进技术,每天比计划多生产3个,因此比原计划提前2天完成,可列出方程.【详解】解:设计划x天生产120个零件,.故选D.【点睛】本题考查由实际问题抽象出分式方程,关键设出天数,以件数作为等量关系列方程.7、A【分析】根据最简二次根式的概念判断即可.【详解】A、是最简二次根式;B、,不是最简二次根式;

C、,不是最简二次根式;

D、,不是最简二次根式;

故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.8、D【分析】根据同底数幂的乘法、幂的乘方、积的乘方、非零的零次幂是1,对各项分析判断后利用排除法求解故选:D.【详解】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(a2b)2=a4b2,故此选项错误;D、(π﹣1)0=1,正确.故选:D.【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方运算,掌握运算法则是解答本题的关键.9、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.10、C【分析】利用计算器得到的近似值即可得到答案.【详解】解:,与最接近的是2.1.故选:C.【点睛】本题主要考查计算器的使用,解题的关键是掌握计算器上常用的按键的功能和使用顺序.11、C【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【详解】折线统计图表示的是事物的变化情况,石城县一周内每天的最高气温的变化情况,宜采用折线统计图.故选:C【点睛】此题考查统计图的选择,解题关键在于熟练掌握各种统计图的应用.12、B【分析】根据完全平方公式把和展开,然后相减即可求出的值.【详解】由题意知:①,②,①-②得:,∴,即,∴,故选:B.【点睛】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式的结构特征是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据同底数幂乘法的逆用和幂的乘方的逆用计算即可.【详解】解:====1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂乘法的逆用和幂的乘方的逆用是解决此题的关键.14、50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【详解】(1)当50°为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=.故答案为:50°或.考点:等腰三角形的性质.15、58【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P,代入数据进行计算即可得解.【详解】∵BP、CP分别是∠ABC和∠ACD的平分线,

∴∠ACD=2∠PCD,∠ABC=2∠PBC,由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PBC,∴∠BAC+∠ABC=∠ACD=2∠PCD=2(∠P+∠PBC)=2∠P+2∠PBC=2∠P+∠ABC,∴∠BAC=2∠P,∵∠P=29,∴∠BAC=58.故答案为:58.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P是解题的关键.16、5x9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.17、小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.18、【分析】一个较小的数可表示为:的形式,其中1≤,据此可得结论.【详解】将0.0000065用科学记数法法表示,其中则原数变为6.5,小数点需要向右移动6为,故n=6故答案为:【点睛】本题考查用科学记数法表示较小的数,需要注意,科学记数法还可以表示较大的数,形式为:.三、解答题(共78分)19、(1),(2)台型手机,台型手机.【分析】(1)由总利润等于销售,型手机获得的利润之和,从而可得答案;(2)由型手机的进货量不超过型手机的倍列不等式求解的范围,再利用函数的性质求解最大的销售利润即可得到答案.【详解】解:(1)由题意得:.(2)根据题意得:,解得,,,随的增大而减小,为正整数,当时,取最大值,则,即商店购进台型手机,台型手机才能使销售利润最大.【点睛】本题考查的是一次函数的应用,一元一次不等式的应用,利用函数的性质求最大利润,掌握以上知识是解题的关键.20、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;

(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;

(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;

②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,

∴(a−2)2+=2,

∵(a-2)2≥2,≥2,

∴a-2=2,2b+2=2,

∴a=2,b=-2;

(2)由(2)知a=2,b=-2,

∴A(2,2),B(-2,2),

∴OA=2,OB=2,

∵△ABC是直角三角形,且∠ACB=45°,

∴只有∠BAC=92°或∠ABC=92°,

Ⅰ、当∠BAC=92°时,如图2,

∵∠ACB=∠ABC=45°,

∴AB=CB,

过点C作CG⊥OA于G,

∴∠CAG+∠ACG=92°,

∵∠BAO+∠CAG=92°,

∴∠BAO=∠ACG,

在△AOB和△BCP中,

∴△AOB≌△CGA(AAS),

∴CG=OA=2,AG=OB=2,

∴OG=OA-AG=2,

∴C(2,2),

Ⅱ、当∠ABC=92°时,如图2,

同Ⅰ的方法得,C(2,-2);

即:满足条件的点C(2,2)或(2,-2)

(3)①如图3,由(2)知点C(2,-2),

过点C作CL⊥y轴于点L,则CL=2=BO,

在△BOE和△CLE中,

∴△BOE≌△CLE(AAS),

∴BE=CE,

∵∠ABC=92°,

∴∠BAO+∠BEA=92°,

∵∠BOE=92°,

∴∠CBF+∠BEA=92°,

∴∠BAE=∠CBF,

在△ABE和△BCF中,

∴△ABE≌△BCF(ASA),

∴BE=CF,

∴CF=BC;

②点C到DE的距离为2.

如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,

由①知BE=CF,

∵BE=BC,

∴CE=CF,

∵∠ACB=45°,∠BCF=92°,

∴∠ECD=∠DCF,

∵DC=DC,

∴△CDE≌△CDF(SAS),

∴∠BAE=∠CBF,

∴CK=CH=2.【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、20°【分析】由三角形内角和定理,求出,由角平分线和平行线的性质,得到∠BHF=65°,由三角形的外角性质,即可得到∠AEG.【详解】解:∵∵平分∵是的外角,【点睛】本题考查了三角形内角和定理,角平分线的定义,平行线的性质,以及三角形的外角性质,解题的关键是熟练掌握所学的知识,正确得到角的关系.22、(1)①30°;②60°﹣2α;(2)①BP=AP+CP,理由见解析;②8﹣2n【分析】(1)先求出∠ABC=60°,得出∠ABD=60°﹣α,再由折叠得出∠A'BD=60°﹣α,即可得出结论;(2)①先判断出△BP'C≌△APC,得出CP'=CP,∠BCP'=∠ACP,再判断出△CPP'是等边三角形,得出PP'=CP;②先求出∠BCP=120°﹣α,再求出∠BCA'=60°+α,判断出点A',C,P在同一条直线上,即:PA'=PC+CA',再判断出△ADP≌△A'DP(SAS),得出A'P=AP,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠CBD=α,∴∠ABD=∠ABC﹣∠CBD=60°﹣α,由折叠知,∠A'BD=∠ABD=60°﹣α,∴∠CBA'=∠A'BD﹣∠CBD=60°﹣α﹣α=60°﹣2α,①当α=15°时,∠CBA'=60°﹣2α=30°,故答案为30°;②用α表示∠CBA'为60°﹣2α,故答案为60°﹣2α;(2)①BP=AP+CP,理由:如图2,连接CP,在BP上取一点P',使BP'=AP,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵∠1=∠2=α,∴△BP'C≌△APC(SAS),∴CP'=CP,∠BCP'=∠ACP,∴∠PCP'=∠ACP+∠ACP'=∠BCP'+∠ACP'=∠ACB=60°,∵CP'=CP,∴△CPP'是等边三角形,∴∠CPB=60°,PP'=CP,∴BP=BP'+PP'=AP+CP;②如图3,由①知,∠BPC=60°,∴∠BCP=180°﹣∠BPC﹣∠PBC=180°﹣60°﹣α=120°﹣α,由(1)知,∠CBA'=60°﹣2α,由折叠知,BA=BA',∵BA=BC,∴BA'=BC,∴∠BCA'=(180°﹣∠CBA')=[180°﹣(60°﹣2α)]=60°+α,∴∠BCP+∠BCA'=120°﹣α+60°+α=180°,∴点A',C,P在同一条直线上,即:PA'=PC+CA',由折叠知,BA=BA',∠ADB=∠A'DB,∴180°﹣∠ADB=180°﹣∠A'DB,∴∠ADP=∠A'DP,∵DP=DP,∴△ADP≌△A'DP(SAS),∴A'P=AP,由①知,BP=AP+CP,∵BP=8,CP=n,∴AP=BP﹣CP=8﹣n,∴A'P=8﹣n,∴CA'=A'P﹣CP=8﹣n﹣n=8﹣2n,故答案为:8﹣2n.【点睛】此题是几何变换综合题,主要考查了折叠的性质,全等三角形的判定和性质,等边三角形的判定和性质,构造出全等三角形是解本题的关键.23、(1).﹣2,4;(2).﹣3m;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP的面积表示出来,列方程求解即可.【详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=AB·MC=×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP=|a|,∴S△ABP=AB·OP=×6×|a|=3|a|,∴3|a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【点睛】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.24、,理由见解析;结论成立;理由见解析;为等边三角形,理由见解析.【分析】(1)先利用同角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论