![安徽省阜阳市城南中学2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M01/1C/2D/wKhkFma00gKAZKrBAAHhCCW4suI757.jpg)
![安徽省阜阳市城南中学2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M01/1C/2D/wKhkFma00gKAZKrBAAHhCCW4suI7572.jpg)
![安徽省阜阳市城南中学2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M01/1C/2D/wKhkFma00gKAZKrBAAHhCCW4suI7573.jpg)
![安徽省阜阳市城南中学2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M01/1C/2D/wKhkFma00gKAZKrBAAHhCCW4suI7574.jpg)
![安徽省阜阳市城南中学2022-2023学年数学八年级第一学期期末综合测试模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M01/1C/2D/wKhkFma00gKAZKrBAAHhCCW4suI7575.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若m<0,则点(-m,m-1)在平面直角坐标系中的位置在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.下列各数组中,不是勾股数的是()A.5,12,13 B.7,24,25C.8,12,15 D.3k,4k,5k(k为正整数)3.已知A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,m=(a﹣c)(b﹣d),则当m<0时,k的取值范围是()A.k<3 B.k>3 C.k<2 D.k>24.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.5.若,,则的值为()A.1 B. C.6 D.6.如果实数a,b满足a+b=6,ab=8,那么a2+b2=()A.36 B.20 C.52 D.147.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A.平均数>中位数>众数 B.平均数<中位数<众数C.中位数<众数<平均数 D.平均数=中位数=众数8.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm9.要使分式有意义,则的取值范围是()A. B. C. D.10.下列各式中,相等关系一定成立的是()A.B.C.D.二、填空题(每小题3分,共24分)11.的平方根是.12.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).13.a,b互为倒数,代数式的值为__.14.如图,,,垂足分别为,,添加一个条件____,可得.15.已知点P(2m+4,m﹣1)在x轴上,点P1与点P关于y轴对称,那么点P1的坐标是_____.16.如图,是的角平分线,点在边的垂直平分线上,,则__________度.17.已知等腰的两边长分别为3和5,则等腰的周长为_________.18.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,若点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值为___________.三、解答题(共66分)19.(10分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.20.(6分)已知:在平面直角坐标系中,点为坐标原点,的顶点的坐标为,顶点在轴上(点在点的右侧),点在上,连接,且.(1)如图1,求点的纵坐标;(2)如图2,点在轴上(点在点的左侧),点在上,连接交于点;若,求证:(3)如图3,在(2)的条件下,是的角平分线,点与点关于轴对称,过点作分别交于点,若,求点的坐标.21.(6分)如图,在平面直角坐标系中,点A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.22.(8分)如图,已知过点的直线与直线:相交于点.(1)求直线的解析式;(2)求四边形的面积.23.(8分)如图①,一个长为,宽为的长方形,沿途中的虚线用剪刀均匀的分成四个小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方法求图②中阴影部分的面积.方法1:________________________________________(只列式,不化简)方法2:________________________________________(只列式,不化简)(2)请写出三个式子之间的等量关系:_______________________________.(3)根据(2)题中的等量关系,解决如下问题:若,求的值.24.(8分)解不等式组,并将解集在数轴上表示出来.25.(10分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.26.(10分)如图,在四边形中,,是的中点,连接并延长交的延长线于点,点在边上,且.(1)求证:≌.(2)连接,判断与的位置关系并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先确定横纵坐标的正负,再根据各象限内点的坐标特征可以判断.【详解】解:∵m<0,∴-m>0,m-1<0,∴点(-m,m-1)在第四象限,故选:D.【点睛】本题考查了平面直角坐标系各象限点的坐标特征,熟记平面直角坐标系中各象限点的坐标的符号是解题的关键.2、C【分析】验证两个较小数的平方和是否等于最大数的平方即可.【详解】解:A、52+122=132,是勾股数,故错误;B、72+242=252,是勾股数,故错误;C、82+122≠152,不是勾股数,故正确;D、(3k)2+(4k)2=(5k)2,是勾股数,故错误.故选:C.【点睛】本题考查了勾股数的定义:可以构成一个直角三角形三边的一组正整数.3、A【分析】将点A,点B坐标代入解析式可求k−1=,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣1x+2图象上的不同两个点,∴b=ka﹣1a+2,d=kc﹣1c+2,且a≠c,∴k﹣1=.∵m=(a﹣c)(b﹣d)<0,∴k<1.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−1=是关键,是一道基础题.4、A【分析】根据材料中公式将1,2,代入计算即可.【详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【点睛】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.5、C【分析】原式首先提公因式,分解后,再代入求值即可.【详解】∵,,∴.故选:C.【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.6、B【分析】原式利用完全平方公式变形,将已知等式整体代入计算即可求出值.【详解】解:∵a+b=6,ab=8,
∴,
故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7、D【解析】从小到大数据排列为20、30、40、1、1、1、60、70、80,1出现了3次,为出现次数最多的数,故众数为1;共9个数据,第5个数为1,故中位数是1;平均数=(20+30+40+1+1+1+60+70+80)÷9=1.∴平均数=中位数=众数.故选D.8、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.9、A【分析】分式有意义的条件是分母不能为0即可.【详解】要使分式有意义,分母不为0,即x+1≠0,∴x≠-1,则的取值范围是x≠-1.故选择:A.【点睛】本题考查分式有意义的条件问题,掌握分式有意义就是满足分母不为0,会解不等式是关键.10、A【分析】用平方差公式和完全平方公式分别计算,逐项判断即可.【详解】解:A.,故A正确;B.应为,故B错误;C.应为,故C错误;D.应为,故D错误.故选A.【点睛】本题考查平方差公式及完全平方公式的计算.二、填空题(每小题3分,共24分)11、±1.【详解】解:∵∴的平方根是±1.故答案为±1.12、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.13、1【解析】对待求值的代数式进行化简,得∵a,b互为倒数,∴ab=1.∴原式=1.故本题应填写:1.14、AB=AD或BC=DC【分析】由题意利用全等直角三角形的判定定理,即一斜边和一直角边相等,两个直角三角形全等进行分析即可.【详解】解:∵,,AC=AC,∴当AB=AD或BC=DC时,有(HL).故答案为:AB=AD或BC=DC.【点睛】本题考查全等三角形的判定,熟练掌握全等直角三角形的判定定理是解题的关键.15、(﹣6,0)【分析】依据点P(2m+4,m﹣1)在x轴上,即可得到m=1,进而得出P(6,0),再根据点P1与点P关于y轴对称,即可得到点P1的坐标是(﹣6,0).【详解】解:∵点P(2m+4,m﹣1)在x轴上,∴m﹣1=0,∴m=1,∴P(6,0),又∵点P1与点P关于y轴对称,∴点P1的坐标是(﹣6,0),故答案为:(﹣6,0).【点睛】本题主要考查了轴上点的坐标性质以及关于轴对称的点坐标性质,得出的值是解题关键.16、1【分析】由线段垂直平分线的性质可得DB=DC,根据等腰三角形的性质可得∠DBC的度数,根据角平分线的性质可得∠ABD的度数,再根据三角形的内角和即得答案.【详解】解:∵点在边的垂直平分线上,∴DB=DC,∴∠DBC=,∵是的角平分线,∴∠ABD=,∴.故答案为:1.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、角平分线的定义和三角形的内角和定理等知识,属于基础题型,熟练掌握上述基本知识是解题关键.17、11或1【分析】根据等腰三角形的定义,分两种情况:腰为3,底为5;腰为5,底为3,然后用三角形三边关系验证一下即可.【详解】当腰为3,底为5,三角形三边为3,3,5,满足三角形三边关系,此时三角形的周长为;当腰为5,底为3,三角形三边为5,5,3,满足三角形三边关系,此时三角形的周长为;综上所述,等腰的周长为11或1.故答案为:11或1.【点睛】本题主要考查等腰三角形的定义,分情况讨论是解题的关键.18、10【分析】过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时MB'=MN+NB'=MN+BN的值最小【详解】解:连接CB',∵BO⊥AC,AB=BC,∠ABC=90°,∴∠CBO=×90°=45°,∵BO=OB',BO⊥AC,∴CB'=CB,∴∠CB'B=∠OBC=45°,∴∠B'CB=90°,∴CB'⊥BC,根据勾股定理可得MB′=1O,MB'的长度就是BN+MN的最小值.故答案为:10【点睛】本题考查轴对称-最短路线问题;勾股定理.确定动点E何位置时,使BN+MN的值最小是关键.三、解答题(共66分)19、(1)5;(2)A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3);(3)M'(x,﹣y).【解析】分析:(1)根据点的坐标,直接描点,根据点的坐标可知,AB∥x轴,且AB=3﹣(﹣2)=5,点C到线段AB的距离3﹣1=2,根据三角形面积公式求解;(2)分别作出点A、B、C关于x轴对称的点A'、B'、C',然后顺次连接A′B′、B′C′、A′C′,并写出三个顶点坐标;(3)根据两三角形关于x轴对称,写出点M'的坐标.本题解析:(1)描点如图,由题意得,AB∥x轴,且AB=3﹣(﹣2)=5,∴S△ABC=×5×2=5;(2)如图;A′(﹣2,﹣1)、B′(3,﹣1)、C′(2,﹣3);(3)M'(x,﹣y).20、(1)点的纵坐标为1;(1)证明见解析;(3)点的坐标为.【分析】(1)由得出,然后通过等量代换得出,则有,进而有,则点C的纵坐标可求;(1)通过推导出,然后求出,则利用含30°的直角三角形的性质即可证明结论;(3)连接,过点作交轴于点,先推出,然后通过垂直和角度之间的代换得出则有,然后进一步,再因为得出的值,则可求出,利用即可求出的值,则点E的坐标可求.【详解】(1)如图,过点作于点又∴点的纵坐标为1.(1)又(3)如图,连接,过点作交轴于点又∵∵点与点关于轴对称,点在轴上∵点在轴上,且在点的上方.∴点的坐标为.【点睛】本题主要考查等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质,掌握等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质是解题的关键,第(3)问有一定的难度,主要是在于辅助线的作法.21、(1)C(4,1);(2)①F(0,1),②【解析】试题分析:过点向轴作垂线,通过三角形全等,即可求出点坐标.过点E作EM⊥x轴于点M,根据的坐标求出点的坐标,OM=2,得到得到△OBF为等腰直角三角形,即可求出点的坐标.直接写出点纵坐标的取值范围.试题解析:(1)C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,∴OM=2,∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90°.∠ABO+∠BAO=90°.∴∠BAO=∠CBM.∵C(4,1).D(0,1).又∵CD∥OM,CD=4.∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°.∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=CD=2,∵A(0,3),OA=3,∴OF=1.∴F(0,1),(3).22、(1);(2)【分析】(1)根据P点是两直线交点,可求得点P的纵坐标,再利用待定系数法将点B、点P的坐标代入直线l1解析式,得到二元一次方程组,求解即可.(2)根据解析式可求得点啊(-2,0),点C(0,1),由可求得四边形的面积【详解】解:(1)∵点P是两直线的交点,将点P(1,a)代入得,即则的坐标为,设直线的解析式为:,那么,解得:.的解析式为:.(2)直线与轴相交于点,直线与x轴相交于点A的坐标为,点的坐标为则,而,【点睛】本题考查了一次函数求解析式,求一次函数与坐标轴围成的图形面积,解本题的关键是求得各交点坐标求得线段长度,将不规则图形转化为规则图形求面积.23、(1);(2);(3)1【分析】(1)方法1:表示出阴影部分小正方形的的边长,再根据正方形的面积公式表示出面积即可.方法2:根据阴影部分的面积等于大正方形的面积减去四个小长方形的面积即可.(2)根据题(1)列出等量关系即可.(3)将代入(2)题即可求出.【详解】解:(1)(顺序可颠倒)(2)(3)∵∴此题中,则【点睛】本题考查的是完全平方公式的几何背景,熟练地掌握完全平方公式的几何背景是解本题的关键.24、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤1.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.25、(1)m+n;m–n;(2)(m−n)2=(m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学高级职称正高《普通外科学》(题库)模拟试卷一
- 皮肤美白技术的发展与市场需求分析
- 2025年山东青岛市政空间开发集团有限责任公司招聘笔试参考题库附带答案详解
- 慈善救助个人申请书
- 气候变化对农业生态系统的挑战及应对策略研究
- 未来电影产业的商业模式与市场趋势研究
- 湖南省长沙市2024年七年级《语文》上册期末试卷与答案(A卷)
- 成都市武侯区2022年七年级《语文》下册期末试卷与参考答案
- 部编版:2022年七年级《语文B卷》上册期中试卷与参考答案
- 退篮球队申请书
- 地震应急救援培训课件
- 《汽车电气设备构造与维修》 第4版 课件 第3、4章 电源系统、发动机电器
- 《南京瞻园赏析》课件2
- 2023年南京市鼓楼区建宁路街道安监办招聘专职安全员考试真题及答案
- 《有责任有担当青春才会闪光》教学课件-2023-2024学年高一下学期爱国主义教育主题班会
- 幼儿中班故事《猪太太生宝宝》课件
- 2021年湖南省公务员考试行政职业能力测验真题
- 井工煤矿中长期防治水规划编制细则
- 高等数学课件第一章函数与极限
- 设备使用手册(范例模板)
- 转让店铺定金合同范文
评论
0/150
提交评论