版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个2.一种纳米材料的厚度是0.00000034m,数据0.00000034用科学记数法表示为()A. B. C. D.3.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF4.如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是()A.1 B. C.ab D.a25.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A., B., C., D.,6.分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A.不变 B.是原来的C.是原来的5倍 D.是原来的10倍7.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间8.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的图形的全等这一章的知识,说明画出的依据是()A.SAS B.ASA C.AAS D.SSS9.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50° B.55° C.60° D.65°10.禽流感病毒的形状一般为球形,直径大约为0.000000102米,数0.000000102用科学记数法表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:=__________.12.分式的最简公分母是_____________.13.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AD长为8cm,则BC=__________14.已知(x+y+2)20,则的值是____.15.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.16.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____17.已知:在△ABC中,∠B=∠C,D,E分别是线段BC,AC上的一点,且AD=AE,(1)如图1,若∠BAC=90°,D是BC中点,则∠2的度数为_____;(2)借助图2探究并直接写出∠1和∠2的数量关系_____.18.给出下列5种图形:①平行四边形②菱形③正五边形、④正六边形、⑤等腰梯形中,既是轴对称又是中心对称的图形有________个.三、解答题(共66分)19.(10分)先化简,再求值:,其中a=.20.(6分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)21.(6分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程(米)与小张出发后的时间(分)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时与之间的函数表达式:.(3)求小张与小李相遇时的值.22.(8分)已知:如图,,//,,且点、、、在同一条直线上.求证://.23.(8分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式24.(8分)已知a+b=2,求()•的值.25.(10分)如图所示,在,.(1)尺规作图:过顶点作的角平分线,交于;(不写作法,保留作图痕迹)(2)在上任取一点(不与点、重合),连结,,求证:.26.(10分)如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000034用科学记数法表示为3.4×10−1.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF
∴Rt△ABC≌Rt△DEF
∴BC=EF,AC=DF
所以只有选项A是错误的,故选A.【点睛】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.4、B【解析】根据分式的基本性质对选项逐一判断即可.【详解】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选B.【点睛】本题考查了分式的基本性质:分式的分子与分母同时乘以或除以同一个不为零的数,分式的值不变.5、B【解析】由题意得,函数y=kx+b的图象经过第一、三、四象限,k>0,b<0,故选B.【点睛】本题考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6、C【分析】分式的分子扩大到原来的25倍,而分m+n母扩大到原来的5倍,利用分式的基本性质,此分式的值扩大到原来的5倍.【详解】解:分式中的m、n的值同时扩大到原来的5倍,则分子扩大到原来的25倍,而分m+n母扩大到原来的5倍,利用分式的基本性质,此分式的值扩大到原来的5倍.故选:C.【点睛】本题主要考查分式的基本性质.7、D【详解】解:∵25<33<31,∴5<<1.故选D.【点睛】此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8、D【分析】根据尺规作图得到,,,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,,,,由SSS可判定,则,故选D.【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS和全等三角形对应角相等是解题的关键.9、B【分析】直接利用全等三角形的性质得出AB=AD,∠B=∠ADE,进而利用已知得出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.【点睛】考核知识点:全等三角形性质.理解性质是关键.10、C【分析】本题考查用科学记数法表示绝对值小于1的数,一般形式为,其中,由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,故选:.【点睛】科学计数法一般形式为,其中.绝对值大于10时,n为正整数,绝对值小于1时,n为负整数.二、填空题(每小题3分,共24分)11、【分析】先计算括号内的加法,除法转化成乘法,约分后可得结果.【详解】.故答案为:.【点睛】本题考查了分式的化简,掌握分式的混合运算的顺序与方法是解题的关键.12、【解析】试题分析:找分母各项的系数的最小公倍数,和相同字母的次数最高的项,故最简公分母为.考点:最简公分母13、12cm【分析】因为AD是∠BAC的平分线,∠BAC=60°,在Rt△ACD中,可利用勾股定理求得DC,进一步求得AC;求得∠ABC=30°,在Rt△ABC中,可求得AB,最后利用勾股定理求出BC.【详解】∵AD是∠BAC的平分线,∠BAC=60°,∴∠DAC=30°,∴DC=AD=4cm,∴AC==4,∵在△ABC中,∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=8,∴BC==12cm.故答案为:12cm.【点睛】本题考查了角平分线的定义,含30°直角三角形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.14、.【分析】利用平方和算术平方根的意义确定(x+y+2)2⩾0,,从而确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x和y的值,再代入求值即可.【详解】解:∵(x+y+2)2≥0,0,且(x+y+2)20,∴(x+y+2)2=0,0,即解得:则.故答案为:.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法.15、1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=1,故估计n大约是1,故答案为1.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.17、1.5∠1=2∠2【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,进而得出∠BAD=2∠CDE.【详解】解:(1)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∠BAC=90°,D是BC中点,∴∠BAD=45°,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∴∠2=1.5°;(2)∠AED=∠CDE+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠CDE,即∠BAD=2∠CDE,∠1=2∠2.【点睛】本题考查的知识点是三角形外角的性质,熟记外角的定义并能够灵活运用是解此题的关键.18、2【分析】根据轴对称图形与中心对称图形的概念和平行四边形、菱形、正五边形、正六边形、等腰梯形的性质求解.【详解】解:①是中心对称图形;②为轴对称图形也为中心对称图形;③为轴对称图形;④为轴对称图形也为中心对称图形;⑤为轴对称图形.故答案为:2.【点睛】此题考查轴对称图形,中心对称图形.解题关键在于掌握当轴对称图形的对称轴是偶数条时,一定也是中心对称图形;偶数边的正多边形既是轴对称图形,也是中心对称图形;奇数边的正多边形只是轴对称图形.三、解答题(共66分)19、2a+6,1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入即可解答本题.【详解】解:原式===2a+6当a==1+4=5时,原式=2×5+6=1.【点睛】本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20、(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【点睛】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.21、(1)小张骑自行车的速度是300米/分;(2);(3)小张与小李相遇时的值是分【分析】(1)由图象看出小张的路程和时间,再根据速度公式求解即可;(2)首先求出点B的坐标,利用待定系数法求解即可;(3)求小李的函数解析式,列方程组求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:,设直线的解析式为:,把和代入得:,解得:,∴小张停留后再出发时与之间的函数表达式:;(3)小李骑摩托车所用的时间:,∵,,同理得:的解析式为:,则,,答:小张与小李相遇时的值是分.【点睛】本题考查了一次函数的路程问题,掌握待定系数法、一次函数的性质、解方程组的方法是解题的关键.22、见解析【分析】先利用平行线的性质和等量代换得出,,然后利用SAS即可证明,则有,最后利用同位角相等,两直线平行即可证明.【详解】解:,.,,即.在和中,,,.【点睛】本题主要考查全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形的判定及性质和平行线的判定及性质是解题的关键.23、(1)40;(2).【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据,,,,……,进而得到与之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖;第3次拼成的图案,共用地砖,…,∴第4次拼成的图案,共用地砖.故答案是:40;(2)第1次拼成如图2所示的图案共用4块地砖,即,第2次拼成如图3所示的图案共用12块地砖,即,第3次拼成如图4所示的图案共用24块地砖,即,第4次拼成的图案共用40块地砖,即,……第次拼成的图案共用地砖:,∴与之间的函数表达式为:.【点睛】本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.24、【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式,可把分母化成,最后进行相同因式的约分得到化简结果,再把整体代入求值.【详解】解:原式=当时原式=【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵阳职业技术学院《塑料成型工艺及模具设计》2023-2024学年第一学期期末试卷
- 2025海南省安全员-B证考试题库及答案
- 贵阳人文科技学院《汽车理论》2023-2024学年第一学期期末试卷
- 2025年重庆建筑安全员考试题库附答案
- 广州应用科技学院《近代材料研究方法》2023-2024学年第一学期期末试卷
- 广州现代信息工程职业技术学院《专业英语与文献阅读》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《材料科学基础B》2023-2024学年第一学期期末试卷
- 2025年湖北建筑安全员知识题库附答案
- 2025云南建筑安全员B证考试题库
- 2025年山西省安全员《A证》考试题库
- 2025年广西旅发南国体育投资集团限公司招聘高频重点提升(共500题)附带答案详解
- 2024-2025学年铜官山区数学三年级第一学期期末调研试题含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之18:“7支持-7.1资源”(雷泽佳编制-2025B0)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之17:“6策划-6.6合作”(雷泽佳编制-2025B0)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之16:“6策划-6.5组织结构”(雷泽佳编制-2025B0)
- 全国英语教师赛课一等奖七年级上册(人教2024年新编)《Unit 7 Happy Birthday》教学设计
- 2024年世界职业院校技能大赛高职组“关务实务组”赛项参考试题库(含答案)
- 江西省2023-2024学年高二上学期期末教学检测数学试题 附答案
- 超市项目投标书模板
- 耐火材料行业竞争格局分析(如市场份额、竞争优劣势等)
- 技术服务保障措施以及保障措施服务计划书
评论
0/150
提交评论