高等数学下册试卷及答案_第1页
高等数学下册试卷及答案_第2页
高等数学下册试卷及答案_第3页
高等数学下册试卷及答案_第4页
高等数学下册试卷及答案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、=的定义域为D=。2、二重积分的符号为。3、由曲线及直线,所围图形的面积用二重积分表示为,其值为。4、设曲线L的参数方程表示为则弧长元素。5、设曲面∑为介于及间的部分的外侧,则。6、微分方程的通解为。7、方程的通解为。8、级数的和为。二、选择题(每小题2分,共计16分)1、二元函数在处可微的充分条件是()(A)在处连续;(B),在的某邻域内存在;(C)当时,是无穷小;(D)。2、设其中具有二阶连续导数,则等于()(A);(B);(C);(D)0。3、设:则三重积分等于()(A)4;(B);(C);(D)。4、球面与柱面所围成的立体体积V=()(A);(B);(C);(D)。5、设有界闭区域D由分段光滑曲线L所围成,L取正向,函数在D上具有一阶连续偏导数,则(A);(B);(C);(D)。6、下列说法中错误的是()方程是三阶微分方程;方程是一阶微分方程;方程是全微分方程;方程是伯努利方程。7、已知曲线经过原点,且在原点处的切线与直线平行,而满足微分方程,则曲线的方程为()(A);(B);(C);(D)。8、设,则()(A)收敛;(B)发散;(C)不一定;(D)绝对收敛。三、求解下列问题(共计15分)1、(7分)设均为连续可微函数。,求。2、(8分)设,求。四、求解下列问题(共计15分)。1、计算。(7分)2、计算,其中是由所围成的空间闭区域(8分)。五、(13分)计算,其中L是面上的任一条无重点且分段光滑不经过原点的封闭曲线的逆时针方向。六、(9分)设对任意满足方程,且存在,求。七、(8分)求级数的收敛区间。高等数学(下册)考试试卷(二)一、填空题(每小题3分,共计24分)1、设,则。2、。3、设,交换积分次序后,。4、设为可微函数,且则。5、设L为取正向的圆周,则曲线积分。6、设,则。7、通解为的微分方程是。8、设,则它的Fourier展开式中的。二、选择题(每小题2分,共计16分)。1、设函数,则在点(0,0)处()(A)连续且偏导数存在;(B)连续但偏导数不存在;(C)不连续但偏导数存在;(D)不连续且偏导数不存在。2、设在平面有界区域D上具有二阶连续偏导数,且满足及,则()(A)最大值点和最小值点必定都在D的内部;(B)最大值点和最小值点必定都在D的边界上;(C)最大值点在D的内部,最小值点在D的边界上;(D)最小值点在D的内部,最大值点在D的边界上。3、设平面区域D:,若,则有()(A);(B);(C);(D)不能比较。4、设是由曲面及所围成的空间区域,则=()(A);(B);(C);(D)。5、设在曲线弧L上有定义且连续,L的参数方程为,其中在上具有一阶连续导数,且,则曲线积分()(A);(B);(C);(D)。6、设是取外侧的单位球面,则曲面积分=()(A)0;(B);(C);(D)。7、下列方程中,设是它的解,可以推知也是它的解的方程是()(A);(B);(C);(D)。8、设级数为一交错级数,则()(A)该级数必收敛;(B)该级数必发散;(C)该级数可能收敛也可能发散;(D)若,则必收敛。三、求解下列问题(共计15分)1、(8分)求函数在点A(0,1,0)沿A指向点B(3,-2,2)的方向的方向导数。2、(7分)求函数在由直线所围成的闭区域D上的最大值和最小值。四、求解下列问题(共计15分)1、(7分)计算,其中是由及所围成的立体域。2、(8分)设为连续函数,定义,其中,求。五、求解下列问题(15分)1、(8分)求,其中L是从A(a,0)经到O(0,0)的弧。2、(7分)计算,其中是的外侧。六、(15分)设函数具有连续的二阶导数,并使曲线积分与路径无关,求函数。高等数学(下册)考试试卷(三)一、填空题(每小题3分,共计24分)1、设,则。2、函数在点(0,0)处沿的方向导数=。3、设为曲面所围成的立体,如果将三重积分化为先对再对最后对三次积分,则I=。4、设为连续函数,则,其中。5、,其中。6、设是一空间有界区域,其边界曲面是由有限块分片光滑的曲面所组成,如果函数,,在上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式:,该关系式称为公式。7、微分方程的特解可设为。8、若级数发散,则。二、选择题(每小题2分,共计16分)1、设存在,则=()(A);(B)0;(C)2;(D)。2、设,结论正确的是()(A);(B);(C);(D)。3、若为关于的奇函数,积分域D关于轴对称,对称部分记为,在D上连续,则()(A)0;(B)2;(C)4;(D)2。4、设:,则=()(A);(B);(C);(D)。5、设在面内有一分布着质量的曲线L,在点处的线密度为,则曲线弧L的重心的坐标为()(A)=;(B)=;(C)=;(D)=,其中M为曲线弧L的质量。6、设为柱面和在第一卦限所围成部分的外侧,则曲面积分=()(A)0;(B);(C);(D)。7、方程的特解可设为()(A),若;(B),若;(C),若;(D),若。8、设,则它的Fourier展开式中的等于()(A);(B)0;(C);(D)。三、(12分)设为由方程确定的的函数,其中具有一阶连续偏导数,求。四、(8分)在椭圆上求一点,使其到直线的距离最短。五、(8分)求圆柱面被锥面和平面割下部分的面积A。六、(12分)计算,其中为球面的部分的外侧。七、(10分)设,求。八、(10分)将函数展开成的幂级数。高等数学(下册)考试试卷(四)一、填空题(每小题3分,共计24分)1、由方程所确定的隐函数在点(1,0,-1)处的全微分。2、椭球面在点(1,1,1)处的切平面方程是。3、设D是由曲线所围成,则二重积分。4、设是由所围成的立体域,则三重积分=。5、设是曲面介于之间的部分,则曲面积分。6、。7、已知曲线上点M(0,4)处的切线垂直于直线,且满足微分方程,则此曲线的方程是。8、设是周期T=的函数,则的Fourier系数为。二、选择题(每小题2分,共计16分)1、函数的定义域是()(A);(B);(C);(D)。2、已知曲面在点P处的切平面平行于平面,则点P的坐标是()(A)(1,-1,2);(B)(-1,1,2);(C)(1,1,2);(D)(-1,-1,2)。3、若积分域D是由曲线及所围成,则=()(A);(B);(C);(D)。4、设,则有()(A);(B);(C);(D)。5、设为由曲面及平面所围成的立体的表面,则曲面积分=()(A);(B);(C);(D)0。6、设是球面表面外侧,则曲面积分=()(A);(B);(C);(D)。7、一曲线过点(e,1),且在此曲线上任一点的法线斜率,则此曲线方程为()(A);(B);(C);(D)。8、幂级数的收敛区间为()(A)(-1,1);(B);(C)(-1,1);(D)[-1,1]。三、(10分)已知函数,其中具有二阶连续导数,求的值。四、(10分)证明:曲面上任意点处的切平面与三坐标面所围成立体的体积为一定值。五、(14分)求抛物面的切平面,使得与该抛物面间并介于柱面内部的部分的体积为最小。六、(10分)计算,其中L为由A(2,0)至B(-2,0)的那一弧段。七、(8分)求解微分方程=0。八、(8分)求幂级数的和函数。高等数学(下册)考试试卷(五)一、填空题(每小题3分,共计24分)1、设是由方程所确定的二元函数,则。2、曲线在点(1,1,1)处的切线方程是。3、设是由,则三重积分=。4、设为连续函数,是常数且,将二次积分化为定积分为。5、曲线积分与积分路径无关的充要条件为。6、设为,则。7、方程的通解为。8、设级数收敛,发散,则级数必是。二、选择题(每小题2分,共计16分)1、设,在点(0,0)处,下列结论()成立。(A)有极限,且极限不为0;(B)不连续;(C);(D)可微。2、设函数有,且,,则=()(A);(B);(C);(D)。3、设D:,在D上连续,则在极坐标系中等于()(A);(B);(C);(D)。4、设是由及所围成,则三重积分(A);(B);(C);(D)。5、设是由所围立体表面的外侧,则曲面积分(A)0;(B)1;(C)3;(D)2。6、以下四结论正确的是()(A);(B)(C);(D)以上三结论均错误。7、设具有一阶连续导数,。并设曲线积分与积分路径无关,则(A);(B);(C);(D)。8、级数的和等于()(A)2/3;(B)1/3;(C)1;(D)3/2。三、求解下列问题(共计15分)1、(8分)设求。2、(7分)设,具有连续偏导数,求。四、求解下列问题(共计15分)1、(8分)计算,其中。2、(7分)计算,其中。五、(15分)确定常数,使得在右半平面上,与积分路径无关,并求其一个原函数。六、(8分)将函数展开为的幂级数。七、(7分)求解方程。高等数学(下册)考试试卷(一)参考答案一、1、当时,;当时,;2、负号;3、;4、;5、180;6、;7、;8、1;二、1、D;2、D;3、C;4、B;5、D;6、B;7、A;8、C;三、1、;;2、;;四、1、;2、;五、令则,;于是=1\*GB3①当L所围成的区域D中不含O(0,0)时,在D内连续。所以由Green公式得:I=0;=2\*GB3②当L所围成的区域D中含O(0,0)时,在D内除O(0,0)外都连续,此时作曲线为,逆时针方向,并假设为及所围成区域,则六、由所给条件易得:又=即即又即七、令,考虑级数当即时,亦即时所给级数绝对收敛;当即或时,原级数发散;当即时,级数收敛;当即时,级数收敛;级数的半径为R=1,收敛区间为[1,3]。高等数学(下册)考试试卷(二)参考答案一、1、1;2、-1/6;3、;4、;5、;6、;7、;8、0;二、1、C;2、B;3、A;4、D;5、C;6、D;7、B;8、C;三、1、函数在点A(1,0,1)处可微,且;;而所以,故在A点沿方向导数为:++2、由得D内的驻点为且,又而当时,令得于是相应且在D上的最大值为,最小值为四、1、的联立不等式组为所以2、在柱面坐标系中所以五、1、连接,由公式得:2、作辅助曲面,上侧,则由Gauss公式得:+===六、由题意得:即特征方程,特征根对应齐次方程的通解为:又因为是特征根。故其特解可设为:代入方程并整理得:即故所求函数为:高等数学(下册)考试试卷(三)参考答案一、1、;2、;3、;4、;6、,公式;7、8、。二、1、C;2、B;3、A;4、C;5、A;6、D;7、B;8、B三、由于,由上两式消去,即得:四、设为椭圆上任一点,则该点到直线的距离为;令,于是由:得条件驻点:依题意,椭圆到直线一定有最短距离存在,其中即为所求。五、曲线在面上的投影为于是所割下部分在面上的投影域为:,由图形的对称性,所求面积为第一卦限部分的两倍。六、将分为上半部分和下半部分,在面上的投影域都为:于是:;,=七、因为,即所以八、又高等数学(下册)考试试卷(四)参考答案一、1、;2、;3、;4、;5、;6、;7、;8、;二、1、C;2、C;3、A;4、D;5、A;6、B;7、A;8、C三、 故四、设是曲面上的任意点,则,在该点处的法向量为:于是曲面在点处的切平面方程为:++=0即++=1因而该切平面与三坐标面所围成的立体的体积为:这是一个定值,故命题得证。五、由于介于抛物面,柱面及平面之间的立体体积为定值,所以只要介于切平面,柱面及平面之间的立体体积为最大即可。设与切于点,则的法向量为,且,切平面方程为:即于是则由,得驻点(1,0)且由于实际问题有解,而驻点唯一,所以当切点为(1,0,5)时,题中所求体积为最小。此时的切平面为:六、联接,并设由L及所围成的区域为D,则七、令,则,于是原方程可化为:即,其通解为即故原方程通解为:八、易求得该幂级数的收敛区间为,令,则注意到,高等数学(下册)考试试卷(五)参考答案一、1、;2、;3、;4、;5、对任意闭曲线,或或使得;6、;7、;8、发散二、1、C;2、B;3、A;4、C;5、C;6、B;7、D;8、A三、1、;;2、。四、1、因为积分域D关于对称,所以故=;2、+因为关于三个坐标轴都对称,而都(至少)关于某个变量为奇函数,故以这些项为被积函数的三重积分都等于0。于是:。五、令则,由已知条件得,即有,所以所求的一个原函数为:六、易知又,其中七、方程的特征方程为:,其特征根为,故方程的通解为:高等数学(下)模拟试卷五一.填空题(每空3分,共21分).函数的定义域为。.已知函数,则。.已知,则。.设L为上点到的上半弧段,则。.交换积分顺序。.级数是绝对收敛还是条件收敛?。.微分方程的通解为。二.选择题(每空3分,共15分).函数在点的全微分存在是在该点连续的()条件。A.充分非必要B.必要非充分C.充分必要D.既非充分,也非必要.平面与的夹角为()。A.B.C.D..幂级数的收敛域为()。A.B.C.D..设是微分方程的两特解且常数,则下列()是其通解(为任意常数)。A.B.C.D..在直角坐标系下化为三次积分为(),其中为,所围的闭区域。A.B.C.D.三.计算下列各题(共分,每题分)1、已知,求。2、求过点且平行直线的直线方程。3、利用极坐标计算,其中D为由、及所围的在第一象限的区域。四.求解下列各题(共分,第题分,第题分)、利用格林公式计算曲线积分,其中L为圆域:的边界曲线,取逆时针方向。、判别下列级数的敛散性:五、求解下列各题(共分,第、题各分,第题分)、求函数的极值。、求方程满足的特解。、求方程的通解。高等数学(下)模拟试卷六一、填空题:(每题分,共21分.).将化为极坐标系下的二重积分。.级数是绝对收敛还是条件收敛?。.微分方程的通解为。二、选择题:(每题3分,共15分.).函数的偏导数在点连续是其全微分存在的()条件。A.必要非充分,B.充分,C.充分必要,D.既非充分,也非必要,.直线与平面的夹角为()。A.B.C.D..幂级数的收敛域为()。A.B.C.D..设是微分方程的特解,是方程的通解,则下列()是方程的通解。A.B.C.D..在柱面坐标系下化为三次积分为(),其中为的上半球体。A.B.C.D.三、计算下列各题(共分,每题分)、已知,求、求过点且平行于平面的平面方程。、计算,其中D为、及所围的闭区域。四、求解下列各题(共分,第题7分,第题分,第题分)、计算曲线积分,其中L为圆周上点到的一段弧。、利用高斯公式计算曲面积分:,其中是由所围区域的整个表面的外侧。、判别下列级数的敛散性:五、求解下列各题(共分,每题分)、求函数的极值。、求方程满足的特解。、求方程的通解。高等数学(下)模拟试卷七一.填空题(每空3分,共24分)1.二元函数的定义域为2.3.的全微分_5.设,则______________________8.级数的和s=二.选择题:(每题3分,共15分)1.在点处两个偏导数存在是在点处连续的条件(A)充分而非必要(B)必要而非充分(C)充分必要(D)既非充分也非必要2.累次积分改变积分次序为(A)(B)(C)(D)3.下列函数中,是微分方程的特解形式(a、b为常数)(A)(B)(C)(D)4.下列级数中,收敛的级数是(A)(B)(C)(D)5.设,则(A)(B)(C)(D)得分阅卷人三、求解下列各题(每题7分,共21分)1.设,求2.判断级数的收敛性3.计算,其中D为所围区域四、计算下列各题(每题10分,共40分)2.计算二重积分,其中是由直线及轴围成的平面区域.3.求函数的极值.4.求幂级数的收敛域.(下)模拟试卷五一、填空题:(每空3分,共21分)、,、,、,、,、,、条件收敛,、(为常数),二、选择题:(每空3分,共15分)、,、,、,、,、三、解:、令、所求直线方程的方向向量可取为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论