版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页专题02不等式一、知识速览二、考点速览知识点1等式的基本性质性质文字表述性质内容注意1对称性SKIPIF1<0可逆2传递性SKIPIF1<0同向3可加、减性SKIPIF1<0可逆4可乘性SKIPIF1<0同向5可除性SKIPIF1<0同向知识点2不等式的性质性质别名性质内容注意1对称性a>b⇔b<a可逆2传递性a>b,b>c⇒a>c同向3可加性a>b⇔a+c>b+c可逆4可乘性a>b,c>0⇒ac>bca>b,c<0⇒ac<bcc的符号5同向可加性a>b,c>d⇒a+c>b+d同向6正数同向可乘性a>b>0,c>d>0⇒ac>bd同向7正数乘方性a>b>0⇒an>bn(n∈N,n≥2)同正知识点3一元二次不等式的解集判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-eq\f(b,2a)没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x≠-\f(b,2a))))){x|x∈R}ax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅知识点4基本不等式1、重要不等式:SKIPIF1<0,(当且仅当SKIPIF1<0时取SKIPIF1<0号).变形公式:SKIPIF1<02、基本不等式:SKIPIF1<0(1)基本不等式成立的条件:SKIPIF1<0(2)等号成立的条件:当且仅当SKIPIF1<0时取等号.(3)算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为SKIPIF1<0,几何平均数为SKIPIF1<0,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.3、利用基本不等式求最值已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值2eq\r(p).(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值eq\f(p2,4).(简记:和定积最大)一、比较两数(式)大小的方法1、作差法:(1)原理:设SKIPIF1<0,则SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;(2)步骤:作差并变形SKIPIF1<0判断差与0的大小SKIPIF1<0得出结论。(3)注意:利用通分、因式分解、配方等方法向有利于判断差的符号的方向变形。2、作商法:(1)原理:设SKIPIF1<0,则SKIPIF1<0;SKIPIF1<0;SKIPIF1<0(2)步骤:作商并变形SKIPIF1<0判断商与1的大小SKIPIF1<0得出结论。(3)注意:作商时各式的符号应相同,如果SKIPIF1<0均小于0,所得结果与“原理”中的结论相反,变形方法有分母(分子)有理化,指、对数恒等变形。【典例1】(2023秋·河南许昌·高三校考期末)已知SKIPIF1<0,则()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0与SKIPIF1<0的大小无法判断【典例2】若实数SKIPIF1<0,SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0二、利用待定系数法求代数式的取值范围已知SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的取值范围第一步:设SKIPIF1<0;第二步:经过恒等变形,求得待定系数SKIPIF1<0;第三步:再根据不等式的同向可加性即可求得SKIPIF1<0的取值范围。【典例1】已知SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的取值范围为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】已知SKIPIF1<0,则SKIPIF1<0的取值范围是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0三、解一元二次不等式的步骤第一步:先看二次项系数是否为正,若为负,则将二次项系数化为正数;第二步:写出相应的方程,计算判别式:①时,求出两根,且(注意灵活运用因式分解和配方法);②时,求根;③时,方程无解第三步:根据不等式,写出解集.【典例1】已知全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】解不等式:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.四、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为与,分子为,设∴,解得:4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。【典例1】已知SKIPIF1<0,则SKIPIF1<0的最大值为.【典例2】已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的最小值是()A.2B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】(多选)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则()A.SKIPIF1<0的最大值为SKIPIF1<0B.SKIPIF1<0的最小值为4C.SKIPIF1<0的最小值为2D.SKIPIF1<0的最大值为4五、不等式恒成立与能成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、SKIPIF1<0,SKIPIF1<02、SKIPIF1<0,SKIPIF1<03、SKIPIF1<0,SKIPIF1<04、SKIPIF1<0,SKIPIF1<0【典例1】正实数SKIPIF1<0满足SKIPIF1<0,且不等式SKIPIF1<0恒成立,则实数SKIPIF1<0的取值范围为.【典例2】已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若不等式SKIPIF1<0恒成立,则SKIPIF1<0的最大值为.【典例3】已知关于SKIPIF1<0的不等式SKIPIF1<0.若不等式对于SKIPIF1<0恒成立,求实数x的取值范围易错点1忽视不等式性质成立的条件点拨:在使用不等式的基本性质进行推理论证时一定要注意前提条件,如不等式两端同时乘以或同时除以一个数、式,两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件.【典例1】(多选)SKIPIF1<0,则下列命题中,正确的有()A.若SKIPIF1<0,则SKIPIF1<0B.若SKIPIF1<0,则SKIPIF1<0C.若SKIPIF1<0,则SKIPIF1<0D.若SKIPIF1<0,则SKIPIF1<0【典例2】(多选)已知SKIPIF1<0,下列命题为真命题的是()A.若SKIPIF1<0,则SKIPIF1<0B.若SKIPIF1<0,则SKIPIF1<0C.若SKIPIF1<0,则SKIPIF1<0D.若SKIPIF1<0,则SKIPIF1<0易错点2忽视不等式中参数的取值范围点拨:对于最高项系数含参数的问题,一定要注意讨论当最高项系数为零时,是否符合题意。【典例1】下列不等式证明过程正确的是()A.若SKIPIF1<0,则SKIPIF1<0B.若x>0,y>0,则SKIPIF1<0C.若x<0,则SKIPIF1<0SKIPIF1<0D.若x<0,则SKIPIF1<0【典例2】(多选)下面结论错误的是()A.不等式SKIPIF1<0与SKIPIF1<0成立的条件是相同的.B.函数SKIPIF1<0的最小值是2C.函数SKIPIF1<0,SKIPIF1<0的最小值是4D.“SKIPIF1<0且SKIPIF1<0”是“SKIPIF1<0”的充分条件易错点3忽视基本不等式应用的条件点拨:(1)利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,(2)对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,b【典例1】已知命题p:“∀x∈SKIPIF1<0,(a+1)x2-2(a+1)x+3>0”为真命题,则实数a的取值范围是()A.-1<a<2B.a≥1C.a<-1D.-1≤a<2【典例2】不等式SKIPIF1<0的解集为SKIPIF1<0,则SKIPIF1<0的取值范围是.易错点4解分数不等式忽略分母不为零点拨:解含有分数的不等式,在去分母时要注意分母不为零的限制条件,防止出现增解,如SKIPI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度现代农业项目融资借款合同3篇
- 2024年度高端服装品牌代理与分销合同2篇
- 2024年农业节水灌溉装置安装合同3篇
- 2024年户外运动场所租赁合同范本版B版
- 暖通空调工程招标合同三篇
- 2024年度量子计算机技术转让合同3篇
- 二零二四年高档住宅区门窗安装工程合同2篇
- 2024年出租汽车服务标准合同模板
- 2024年专属:高级管理人员聘用协议3篇
- 2024年版教育软件开发与授权许可合同6篇
- 行政复议法-形考作业4-国开(ZJ)-参考资料
- 严重精神障碍患者随访服务记录表
- 强化学习 课件 第5章 强化学习的实验环境与工具
- 经济学仿真模拟实训报告
- 零星项目维修服务方案设计
- 介入手术术后护理
- (高清版)DZT 0388-2021 矿区地下水监测规范
- 直播带货主播培训课件
- 新潮传媒行业分析
- 2023-2024学年高考英语专项真题练习-名词性从句(附解析)
- 消防工程投标方案(技术标)
评论
0/150
提交评论