版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列计算错误的是()A. B.C. D.2.具备下列条件的中,不是直角三角形的是()A. B.C. D.3.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.44.下列交通标志是轴对称图形的是()A. B. C. D.5.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.46.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),如图中的折线表示与之间的函数关系,下列说法:①动车的速度是千米/小时;②点B的实际意义是两车出发后小时相遇;③甲、乙两地相距千米;④普通列车从乙地到达甲地时间是小时,其中不正确的有()A.个 B.个 C.个 D.个7.下列哪个点在函数的图象上()A. B. C. D.8.如图,在同一直线上,≌,,,则的值为()A. B. C. D.9.下列从左边到右边的变形,是正确的因式分解的是()A. B.C. D.10.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,15二、填空题(每小题3分,共24分)11.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为______.12.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.13.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.14.“同位角相等”的逆命题是__________________________.15.分解因式:.16.如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD=AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=EC中,正确的是_____.17.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.18.点在第四象限,则x的取值范围是_______.三、解答题(共66分)19.(10分)某班要购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.(1)篮球和足球的单价各是多少元?(2)若该班恰好用完1000元购买的篮球和足球,则购买的方案有哪几种?20.(6分)如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE求证:AH=2BD21.(6分)某广告公司为了招聘一名创意策划,准备从专业技能和创新能力两方面进行考核,成绩高者录取.甲、乙、丙三名应聘者的考核成绩以百分制统计如下:(1)如果公司认为专业技能和创新能力同等重要,则应聘人将被录取.(2)如果公司认为职员的创新能力比专业技能重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.22.(8分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.23.(8分)如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)24.(8分)如图,将长方形ABCD沿EF折叠,使点D与点B重合.(1)若∠AEB=40°,求∠BFE的度数;(2)若AB=6,AD=18,求CF的长.25.(10分)某火车站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?26.(10分)如图,已知四边形ABCD,AB=DC,AC、BD交于点O,要使,还需添加一个条件.请从条件:(1)OB=OC;(2)AC=DB中选择一个合适的条件,并证明你的结论.解:我选择添加的条件是____,证明如下:
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次根式的加减法对A进行判断;根据平方差公式对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、,计算正确,不符合题意;B、,计算错误,符合题意;C、,计算正确,不符合题意;D、,计算正确,不符合题意;故选:B.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.2、D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【详解】A、由和可得:∠C=90°,是直角三角形,此选项不符合题意;B、由得,又,则∠A=90°,是直角三角形,此选项不符合题意;C、由题意,,是直角三角形,此选项不符合题意;D、由得3∠C+3∠C+∠C=180°,解得:,则∠A=∠B=≠90°,不是直角三角形,此选项符合题意,故选:D.【点睛】本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键.3、C【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论;④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.【详解】①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵△ABD≌△ACE,∴∠ABD=∠ACE,∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,而∠ACE与∠AEC不一定相等,∴②错误;③设BD与CE、AC的交点分别为F、G,∵△ABD≌△ACE,∴∠ABD=∠ACE,∠AGB=∠FGC,
∵∠CAB=90°,
∴∠BAG=∠CFG=90°,
∴BD⊥CE,∴③正确;④∵∠BAE+∠EAD+∠DAC+∠BAC=360,∠EAD=∠BAC=90°,
∴∠BAE+∠DAC=360-90°-90°=180,∴④正确;综上,①③④正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.4、C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、D【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.6、B【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是=千米/小时,设动车的速度为x千米/小时,
根据题意,得:3x+3×=1000,
解得:x=250,
动车的速度为250千米/小时,错误;④由图象知x=t时,动车到达乙地,
∴x=12时,普通列车到达甲地,
即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7、C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数的图象上,(2,0)也不在函数的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数的图象上,(−2,0)在函数的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.8、C【分析】设BD=x,根据全等的性质得到BC=x,故BE=AB=x+2,再根据得到方程即可求解.【详解】设BD=x∵≌∴BD=BC=x∴BE=AB=x+2,∵∴AB+BD=8,即x+2+x=8解得x=3∴=EC×BD=×2×3=3故选C.【点睛】此题主要考查全等的性质,解题的关键是熟知三角形的性质及三角形的面积公式.9、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、右边不是积的形式,该选项错误;B、,该选项错误;
C、右边不是积的形式,该选项错误;D、,是因式分解,正确.
故选:D.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.10、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.二、填空题(每小题3分,共24分)11、6.9×10﹣1.【解析】试题分析:对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000069=6.9×10﹣1.考点:科学记数法.12、1.5【详解】因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=13、25°或40°或10°【解析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.14、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.15、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.16、①③④.【分析】由等边三角形的性质得出AB=AC,∠B=∠BAC=∠ACE=60,由SAS证得△ABD≌△ACE,得出∠BAD=∠CAE,AD=AE,由折叠的性质得CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,推出∠DAM=∠BAC=60,则△ADM是等边三角形,得出DM=AD,易证AB>DM,AD>DC,得出△ABD与△DCM不全等,由折叠的性质得AE=AM,CE=CM,则AC垂直平分EM,即∠ENC=90,由∠ACE=60,得出∠CEN=30,即可得出CN=EC.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACE=60,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠BAD=∠CAE,AD=AE,故①正确;由折叠的性质得:CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,∴∠DAM=∠BAC=60,∴△ADM是等边三角形,∴DM=AD,∵AB>AD,∴AB>DM,∵∠ACD>∠DAC,∴AD>DC,∴△ABD与△DCM不全等,故③正确、②错误;由折叠的性质得:AE=AM,CE=CM,∴AC垂直平分EM,∴∠ENC=90,∵∠ACE=60,∴∠CEN=30,∴CN=EC,故④正确,故答案为:①③④.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形三边关系、含30角直角三角形的性质等知识;熟练掌握折叠的性质,证明三角形全等是解题的关键.17、或【分析】因为BM可以交AD,也可以交CD.分两种情况讨论:①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则,所以求得BM等于.【详解】分两种情况讨论:①BM交AD于F,∵∠ABE=∠BAF=90°,AB=BA,AE=BF,∴△ABE≌△BAF(HL)∴AF=BE,∵BE=3,∴AF=3,∴FD=EC,连接FE,则四边形ABEF为矩形,∴BM=AE,∵AB=4,BE=3,∴AE==5,∴BM=;②BM交CD于F,∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠BEM+∠EBM=90°,∴∠BME=90°,即BF垂直AE,∴△BME∽△ABE,∴,∵AB=4,AE=5,BE=3,∴BM=.综上,故答案为:或【点睛】本题考查了正方形的性质和勾股定理,以及三角形的全等和相似,解题的关键是熟知相似三角形的判定与性质.18、【分析】根据第四象限的点的横坐标是正数,列出不等式,即可求解.【详解】解:∵点在第四象限,解得,即x的取值范围是故答案为.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三、解答题(共66分)19、(1)足球的单价为60元,篮球的单价为100元;(2)学校共有3种购买方案,方案1:购买7个篮球,5个足球;方案2:购买4个篮球,10个足球;方案3:购买1个篮球,15个足球.【分析】(1)设足球的单价为元,则篮球的单价为元,根据“花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等”列出分式方程即可求出结论;(2)设购买篮球个,足球个,根据“该班恰好用完1000元购买的篮球和足球”列出二元一次方程,然后求出所有正整数解即可.【详解】解:(1)设足球的单价为元,则篮球的单价为元依题意,得:解得:,经检验,是原方程的解,且符合题意.答:足球的单价为60元,篮球的单价为100元.(2)设购买篮球个,足球个,依题意,得:,.,均为正整数,为5的倍数,或10或15,或4或1.答:学校共有3种购买方案,方案1:购买7个篮球,5个足球;方案2:购买4个篮球,10个足球;方案3:购买1个篮球,15个足球.【点睛】此题考查的是分式方程的应用和二元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.20、详见解析【分析】由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC知∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH=2BD【详解】∵AD是高,BE是高∴∠EBC+∠C=∠CAD+∠C=90°∴∠EBC=∠CAD又∵AE=BE∠AEH=∠BEC∴△AEH△BEC(ASA)∴AH=BC∵AB=AC,AD是高∴BC=2BD∴AH=2BD考点:1等腰三角形的性质;2全等三角形的判定与性质21、(1)甲(2)乙将被录取【分析】(1)根据题意分别求出甲、乙、丙三名应聘者的平均成绩进行比较即可;(2)由题意利用加权平均数计算他们赋权后各自的平均成绩,从而进行说明.【详解】解:(1)根据公司认为专业技能和创新能力同等重要,即是求甲、乙、丙三名应聘者的平均成绩:甲:;乙:;丙:;所以应聘人甲将被录取.(2)甲:;乙:;丙:;所以乙将被录取.【点睛】本题主要考查平均数相关计算,解题的关键是掌握算术平均数和加权平均数的定义.22、(1)y=x+2;(2)1【分析】(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.【详解】解:(1)由图可知、,,解得,故此一次函数的解析式为:;(2)由图可知,,,,,.答:的面积是1.【点睛】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.23、(1)∠AFE=60°;(2)见解析;(3)【分析】(1)通过证明得到对应角相等,等量代换推导出;(2)由(1)得到,则在中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明和全等,利用对应边相等,等量代换得到比值.(通过将顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【点睛】掌握等边三角形、直角三角形的性质,及三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建设项目招标合同样本
- 住宅室内设计施工合同
- 住宅建造合同模板
- 电梯设备安装与定期检修协议
- 上海市内销商品房出售合同
- 2024年个人土地交易合同模板
- 2024意外伤害赔偿协议书范例
- 影视广告制作合同
- 合伙协议与法律规定冲突时的解决途径
- 2024年技师合同书
- 幼儿园大班语言《骑着恐龙去上学》课件
- 无偿划转国有股权及资产的可行性论证报告(附无偿划转协议)
- 公务车司机年度工作总结 公务用车驾驶员个人总结
- 第二版《高中物理题型笔记》上册
- 上海市大学生安全教育(2022级)学习通课后章节答案期末考试题库2023年
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
评论
0/150
提交评论