版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2) B.(﹣9,6) C.(﹣1,6) D.(﹣9,2)2.直角坐标系中,我们定义横、纵坐标均为整数的点为整点.在的范围内,直线和所围成的区域中,整点一共有()个.A.12 B.13 C.14 D.153.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A. B. C. D.4.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行6.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,37.若无解,则m的值是()A.-2 B.2 C.3 D.-38.在Rt△ABC中,已知AB=5,AC=4,BC=3,∠ACB=90°,若△ABC内有一点P到△ABC的三边距离相等,则这个距离是()A.1 B. C. D.29.如图,的平分线与的垂直平分线相交于点,于点,,,则的长为()A. B. C. D.10.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A.80° B.60°C.40° D.30°二、填空题(每小题3分,共24分)11.分解因式xy2+4xy+4x=_____.12.如图,在的同侧,,点为的中点,若,则的最大值是_____.13.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________14.若分式的值为0,则x的值为___________.15.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.16.如图,在中,的垂直平分线交的平分线于,若,,则的度数是________.17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.18.代数式的最大值为______,此时x=______.三、解答题(共66分)19.(10分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?20.(6分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.21.(6分)在中,,射线,点在射线上(不与点重合),连接,过点作的垂线交的延长线于点.(1)如图①,若,且,求的度数;(2)如图②,若,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.(3)如图③,在(2)的条件下,连接,设与射线的交点为,,,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.22.(8分)“垃圾分类”意识已经深入人心.我校王老师准备用元(全部用完)购买两类垃圾桶,已知类桶单价元,类桶单价元,设购入类桶个,类桶个.(1)求关于的函数表达式.(2)若购进的类桶不少于类桶的倍.①求至少购进类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分类桶调换成另一种类桶,且调换后类桶的数量不少于类桶的数量,已知类桶单价元,则按这样的购买方式,类桶最多可买个.(直接写出答案)23.(8分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.24.(8分)分解因式:(1)ax2﹣9a;(2)4ab2﹣4a2b﹣b1.25.(10分)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?26.(10分)按要求作图并填空:(1)作出关于轴对称的;(2)作出过点且平行于轴的直线,则点关于直线的对称点的坐标为______.(3)在轴上画出点,使最小.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【详解】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选A.【点睛】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.2、A【分析】根据题意,画出直线和的函数图像,在的范围内寻找整点即可得解.【详解】根据题意,如下图所示画出直线和在范围内的函数图像,并标出整点:有图可知,整点的个数为12个,故选:A.【点睛】本题主要考查了函数图像的画法及新定义整点的寻找,熟练掌握一次函数图像的画法以及理解整点的含义是解决本题的关键3、A【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,
∴∠AEB=∠A+∠C=65°,
∵∠B=45°,
∴∠DFE=65°+45°=110°,
故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4、D【详解】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选D.【点睛】本题考查1、负指数幂;2、零指数幂;3、绝对值;4、乘方,计算难度不大.5、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.6、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.7、C【解析】试题解析:方程两边都乘(x-4)得:m+1-x=0,∵方程无解,∴x-4=0,即x=4,∴m+1-4=0,即m=3,故选C.点睛:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8、A【分析】连接PC、PB、PA,作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,根据S△APC+S△APB+S△BPC=S△ACB,列出方程,即可求解.【详解】连接PC、PB、PA,作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,由题意得:PE=PD=PF,S△APC+S△APB+S△BPC=S△ACB,∴,即,解得:PD=1.故选:A.【点睛】本题主要考查三角形的面积公式,添加合适的辅助线,构造方程,是解题的关键.9、A【解析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=×(11-5)=1.故选:A.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题10、C【解析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.【详解】根据折叠的性质可得:BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC,∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选C.【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是解答本题的关键.二、填空题(每小题3分,共24分)11、x(y+2)2【解析】原式先提取x,再利用完全平方公式分解即可。【详解】解:原式=,故答案为:x(y+2)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题13、【解析】由图形可得:14、-3【分析】由分式的值为0,则分子为0,分母不为0,可得答案.【详解】因为:分式的值为0所以:解得:故答案为【点睛】本题考查的是分式的值为0的条件,即分子为0,分母不为0,熟知条件是关键.15、1【解析】过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.【详解】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=1∠POE=30°.∴PF=PE=OE=1.则PD=PF=1.故答案是:1.【点睛】考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF是解决的关键.16、58°【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BE=CE,可得出∠DBC=∠ECB=∠ABD,然后根据三角形内角和定理计算出∠DBC的度数,即可算出∠BEF的度数.【详解】解:∵BD平分∠ABC,
∴∠DBC=∠ABD,∵的垂直平分线交的平分线于,
∴BE=CE,
∴∠DBC=∠ECB=∠ABD,∵,,
∴∠DBC=(180°-60°-24°)=32°,
∴∠BEF=90°-32°=58°,
故答案为:58°.【点睛】本题考查线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.17、(4,6)或(4,0)【解析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.18、2±1.【分析】根据算术平方根的性质可以得到≥0,即最小值是0,据此即可确定原式的最大值.【详解】∵0,∴当x=±1时,有最小值0,则当x=±1,2有最大值是2.故答案为:2,±1.【点睛】本题考查了二次根式性质,理解≥0是关键.三、解答题(共66分)19、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.20、(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.21、(1);(2),见解析;(3),见解析【分析】(1)如图①中,首先证明△ABD是等边三角形,推出∠ABD=60°,由∠PDB+∠PAB=180°,推出∠APD+∠ABD=180°,由此即可解决问题.(2)如图②中,结论:DP=DB.只要证明△DEP≌△DNB即可.(3)结论:α+β=180°.只要证明∠1=∠3,即可解决问题.【详解】解:(1)∵,,∴,∵,∴,∵,∴△ABD是等边三角形,∴,∵,∴,∴(2)结论:,理由如下:证明:作于,于.∵,∴∵,∴,,∴,∵∴∵∴,又∵∴△DEP≌△DNB,∴.(3)结论:.由(2)可知,∵,∴∵∴∴∵∴即.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等知识,解题的关键是学会添加常用辅助线,构造全等三角形,证明角相等.22、(1);(2)①50;②18.【分析】(1)根据题意,通过等量关系进行列式即可得解;(2)①根据购进的类桶不少于类桶的倍的不等关系进行列式求解即可得解;②根据题意设类桶的数量为a,根据A类桶单价与C类桶单价的比值关系确定不等式,进而求解,由总费用不变即可得到B类桶的数量.【详解】(1)由题意,得,整理得∴关于的函数表达式为;(2)①购进的类桶不少于类桶的倍,解得∴至少购买类桶个;②当时,∵类桶单价元,类桶单价元∴类桶单价:类桶单价=2:3设调换后C有a本由题意得:解得,可知a时2的倍数∵,a为正整数∴∴类桶最多可买18个.【点睛】本题主要考查了一次函数表达式的确定以及一元一次不等式的实际应用,结合实际情况求解不等式是解决本题的关键.23、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年货运代理合同:货运代理公司与出口商之间的货运代理协议2篇
- 人力资源社会保障部劳动合同示范文本
- 2024年度工程停工补偿款申请流程合同
- 掘进队材料员安全生产岗位责任制(2篇)
- 2024年学校安全检查制度范文(2篇)
- 汽车指标租赁合同范本
- 二零二四年度跨境电商运营与物流服务合同2篇
- 2024年度工程分包安全合同2篇
- 班主任班级活动创新
- 白血病口疮的护理
- 2023年全国职业院校技能大赛-声乐、器乐表演大赛赛项规程
- 2024消防维保投标文件模板
- 部编版四年级上册语文第二单元大单元教学设计
- 2024年安徽蚌埠怀远县农业农村局招募特聘动物防疫专员18人历年(高频重点复习提升训练)共500题附带答案详解
- DL∕T 5550-2018 火力发电厂燃油系统设计规程
- 安全治本攻坚三年行动方案及重大事故隐患会议纪要(完整版)
- 地基与基础工程(5篇)
- 机械基础习题(附参考答案)
- 周围神经病变(课件)
- 2024年全国中小学教师职业道德知识竞赛试题库及答案
- 知识付费合同协议范本
评论
0/150
提交评论