版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章
立体几何初步直线与直线垂直1.空间两直线的位置关系:(1)从公共点的数目来看可分为:①有且只有一个公共点——两直线相交②没有公共点两直线平行两直线为异面直线复习导(2)从平面的性质来讲,可分为:两直线相交①在同一平面内
两直线平行②不同在任何一个平面内——两直线为异面直线。
2.在平面内,两条直线相交成四个角,其中不大于90度的角称为它们的夹角,用以刻画两直线的错开程度,如图.O导如图,在正方体中,直线与直线AB,直线与直线AB都是异面直线,直线与相对于直线AB的位置相同吗?如果不同,如何表示这种差异呢?观察:不同思考:异面直线有没有夹角呢?若有,那如何找出这个夹角?导阅读课本146-148页,完成导纲基础感知部分,并思考以下问题:1.什么是异面直线所成角?2.异面直线所成角的范围是多少?思议小组讨论:”思“中疑惑及例1
异面直线所成角的定义:
如图,已知两条异面直线a,b,经过空间任一点O作直线a′//a,b′//b,则把a′与b′所成的锐角(或直角)叫做异面直线所成的角(或夹角).(1)当两条直线平行时,我们规定他们所成的角为0°.(2)异面直线所成的角θ的取值范围:0°<θ≤90°.(3)如果两条异面直线a,b所成的角是直角,就说这两条异面直线互相垂直,记作a⊥b.评思考1:这个角的大小与O点的位置有关吗即O点位置不同时,这一角的大小是否改变无关;不改变。(1)通过平移,把异面直线夹角转化为相交直线的夹角(2)将空间图形转化为平面图形思考2:如何找异面直线所成的角?评例1如图,已知正方体ABCD-A′B′C′D′.(1)哪些棱所在的直线与直线AA′垂直?(2)求直线BA′与CC′所成的角大小。(3)求直线BA′与AC所成的角大小。(2)由
可知,
为异面直线
与
的夹角,=45,所以,直线
与
的夹角为45°.
解:(1)直线垂直.所在直线分别与展例1如图,已知正方体ABCD-A′B′C′D′.(1)哪些棱所在的直线与直线AA′垂直?(2)求直线BA′与CC′所成的角大小。(3)求直线BA′与AC所成的角大小。(3)如图,连接
,因为
是正方体,所以,从而四边形
是平行四边形,所以
。
于是
为异面直线BA′与AC所成的角。连接,易知
是等边三角形,所以
,从而异面直线BA′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年外转子电机项目资金需求报告代可行性研究报告
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 学校食品安全工作实施方案
- 2024年房地产围挡施工协议详尽示例
- 2024年企业劳动协议格式样本2
- 保安监控系统维修保养协议样本文档
- 2024年专项企业融资促成协议示例
- 店面买卖协议2024年
- 2024年餐饮业食材采购协议范本
- 城市出租车2024年度承包协议样本
- 上册文字表达式-符号表达式-化学式
- 专业技术职称等级分类
- 江苏省城市设计编制导则
- GB_T 28581-2021 通用仓库及库区规划设计参数(高清版)
- 2022年铁路货运员考试题库(汇总版)
- 《基坑支护》PPT课件.ppt
- 工程委外维保流程ppt课件
- 探究如何提高机电工程施工质量的方法
- 仓库分区及状态标识
- 浅析微博营销对消费者购买行为的影响
- 超高层建筑电气设计要点分析
评论
0/150
提交评论