2023届江西省育华学校数学八上期末经典模拟试题含解析_第1页
2023届江西省育华学校数学八上期末经典模拟试题含解析_第2页
2023届江西省育华学校数学八上期末经典模拟试题含解析_第3页
2023届江西省育华学校数学八上期末经典模拟试题含解析_第4页
2023届江西省育华学校数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知一组数据,,,,的众数是,那么这组数据的方差是()A. B. C. D.2.下列长度的三条线段能组成三角形的是()A.. B..C.. D..3.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.4.下列各式中正确的是()A. B. C. D.5.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.6.如图,有下列四种结论:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2个结论作为依据不能判定△ABC≌△ADC的是()A.①② B.①③ C.①④ D.②③7.将变形正确的是()A. B.C. D.8.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.649.关于直线下列说法正确的是()A.点不在上 B.直线过定点C.随增大而增大 D.随增大而减小10.在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于()A.50° B.55° C.45° D.40°二、填空题(每小题3分,共24分)11.若点关于轴的对称点的坐标是,则的值是__________.12.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;13.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________14.如图,在中,是的垂直平分线,,则的周长为______.15.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的______.16.如图,已知点是直线外一点,是直线上一点,且,点是直线上一动点,当是等腰三角形时,它的顶角的度数为________________.17.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.18.若,,则=_______三、解答题(共66分)19.(10分)如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系中,已知,.①在点P,点Q中,___________是点S关于原点O的“正矩点”;②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可;(2)在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为.①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标的值;②若点C的纵坐标满足,直接写出相应的k的取值范围.20.(6分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?21.(6分)已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.22.(8分)已知a+b=2,求()•的值.23.(8分)如图,在平面直角坐标系xOy中,一次函数y1=−x+2与x轴、y轴分别相交于点A和点B,直线y2=kx+b(k≠0)经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求A、

B的坐标;(2)求△ABO的面积;(3)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式.24.(8分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.(1)求证:DE=BD+CE.(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).25.(10分)计算(1)(-3x2y2)2·(2xy)3÷(xy)2(2)8(x+2)2-(3x-1)(3x+1)(3)(π﹣3.14)0+|﹣2|﹣.(4)26.(10分)若∠1=∠2,∠A=∠D,求证:AB=DC

参考答案一、选择题(每小题3分,共30分)1、A【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,1,9,x,2的众数是1,所以x=1.于是这组数据为10,1,9,1,2.该组数据的平均数为:(10+1+9+1+2)=1,方差S2=[(10-1)2+(1-1)2+(9-1)2+(1-1)2+(2-1)2]==2.1.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.2、C【解析】根据三角形三边之间的关系即在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边判断即可.【详解】解:A选项,不能组成三角形,A错误;B选项,不能组成三角形,B错误;C选项,经计算满足任意两边之和大于第三边,任意两边之差小于第三边,C正确;D选项,不能组成三角形,D选项错误.【点睛】本题考查了三角形三边之间的关系,灵活利用三角形三边的关系是判断能否构成三角形的关键.3、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.4、D【分析】依据平方根、立方根意义将各式化简依次判断即可.【详解】,故A错误;,故B错误;无意义,故C错误;正确.故此题选择D.【点睛】此题考察立方根、平方根意义,正确理解意义才能正确判断.5、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL依次对各选项分析判断即可.【详解】A、由AB=AD,∠B=∠D,虽然AC=AC,但是SSA不能判定△ABC≌△ADC,故A选项与题意相符;B、由①AB=AD,③∠BAC=∠DAC,又AC=AC,根据SAS,能判定△ABC≌△ADC,故B选项与题意不符;C、由①AB=AD,④BC=DC,又AC=AC,根据SSS,能判定△ABC≌△ADC,故C选项与题意不符;D、由②∠B=∠D,③∠BAC=∠DAC,又AC=AC,根据AAS,能判定△ABC≌△ADC,故D选项与题意不符;故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、C【分析】根据进行变形即可.【详解】解:即故选:C.【点睛】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.8、D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=1,则正方形QMNR的面积为1.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.9、B【分析】将点的坐标代入可判断A、B选项,利用一-次函数的增减性可判断C、D选项.【详解】解:A.当x=0时,可得y=k,即点(0,k)在直线I上,故A不正确;B.当x=-1时,y=-k+k=0,即直线过定点(-1,0),故B正确;C、D.由于k的符号不确定,故C、D都不正确;故答案为B.【点睛】本题主要考查了一次函数图象与系数的关系,掌握函数图象上点的坐标与函数解忻式的关系及一次函数的增减性是解答本题的关键.10、C【详解】解:∵△ABC中,∠C=55°,∴∠A+∠B=180°-∠C=180°-55°=125°①,∵∠A-∠B=35°②,∴①-②得,2∠B=90°,解得∠B=45°故选C【点睛】本题考查三角形内角和定理,难度不大.二、填空题(每小题3分,共24分)11、-1【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得3=n,m+4=0,解出m、n的值,可得答案.【详解】解:∵点关于轴的对称点的坐标是,∴3=n,m+4=0,∴n=3,m=-4,∴m+n=-1.故答案为:-1.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.12、25或7【解析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.13、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.14、10【分析】首先根据线段垂直平分线的性质,得出AD=CD,然后将的周长进行边长转换,即可得解.【详解】∵是的垂直平分线,∴AD=CD∵,∴的周长为:AB+BD+AD=AB+BD+DC=AB+BC=3+7=10故答案为:10.【点睛】此题主要考查线段垂直平分线的性质,熟练掌握,即可解题.15、不稳定性【分析】生活中常见的伸缩门、升降机等,这是应用了四边形不稳定性进行制作的,便于伸缩.【详解】解:学校大门做成伸缩门,这是应用了四边形不稳定性的特性.故答案为:不稳定性.【点睛】本题考查了四边形的特征,学校大门做成的伸缩门,这是应用了四边形不稳定性制作的.16、或或【分析】分AB边为腰或底画出图形求解即可.【详解】①当AB为腰时,如图,在△ABP1中,AB=AP1,此时顶角∠BAP1的度数为:20°;在△ABP2中,AB=BP2,此时顶角∠ABP2的度数为:180°-20°×2=140°;在△ABP3中,AB=BP3,此时顶角∠BAP3的度数为:180°-20°=160°;②当AB为底时,如图,在△ABP4中,AP4=BP4,此时顶角∠BAP4的度数为:180°-20°×2=140°.故答案为:或或.【点睛】此题主要考查了等腰三角形的判定以及三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.17、1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2"CD=1.考点:直角三角形斜边上的中线.18、1【详解】解:根据题意,可得所以两式相减,得4xy=4,xy=1.考点:完全平方公式三、解答题(共66分)19、(1)①点P;②见解析;(2)①点C的横坐标的值为-1;②【分析】(1)①在点P,点Q中,点OS绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P;②利用新定义得点S是点P关于点M的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF≌△AOB,则FC=OB求得点C的横坐标;②用含k的代数式表示点C纵坐标,代入不等式求解即可.【详解】解:(1)①在点P,点Q中,点OS绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②因为MP绕M点顺时针旋转得MS,所以点S是点P关于点M的“正矩点”,同理还可以得点Q是点P关于点S的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE⊥x轴于点E,CF⊥y轴于点F,可得∠BFC=∠AOB=90°.∵直线与x轴交于点A,与y轴交于点B,∴点B的坐标为在x轴的正半轴上,∵点A关于点B的“正矩点”为点,∴∠ABC=90°,BC=BA,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠1=90°,∴∠1=∠1.∴△BFC≌△AOB,∴,可得OE=1.∵点A在x轴的正半轴上且,,∴点C的横坐标的值为-1.②因为△BFC≌△AOB,,A在轴正半轴上,所以BF=OA,所以OF=OB-OF=点,如图2,-1<≤2,即:-1<≤2,则.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.20、小华家离学校1米.【解析】设出平路和坡路的路程,由题意从家里到学校需10分钟,从学校到家里需15分钟,列方程即可得出答案.【详解】设平路有x米,坡路有y米,根据题意列方程得,,解这个方程组,得,所以x+y=1.所以小华家离学校1米.【点睛】本题考查二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系进行解答,注意来回坡路的变化是解题的关键.21、(1)12;(2)当t为9或时,△PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,△PBQ是等边三角形,即可得:PB=BQ,∵在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.∴AB=36cm,可得:PB=36-2t,BQ=t,即36-2t=t,解得:t=12故答案为;12(2)当t为9或时,△PBQ是直角三角形,理由如下:∵∠C=90°,∠A=30°,BC=18cm∴AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∴BP=AB-AP=36-2t,BQ=t∵△PBQ是直角三角形∴BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=所以,当t为9或时,△PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定理解答.22、【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式,可把分母化成,最后进行相同因式的约分得到化简结果,再把整体代入求值.【详解】解:原式=当时原式=【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要找准最简公分母,约分时先把分子分母因式分解,得到各个因式乘积的形式,再找相同的因式进行约分得到最简分式.代入求值时,要有整体代入的思维.23、(1)A(3,0),B(0,2);(2)3;(3)P(,),y=-1x+1【分析】(1)已知直线y1的解析式,分别令x=0和y=0即可求出A和B的坐标;(2)根据(1)中求出的A和B的坐标,可知OA和OB的长,利用三角形的面积公式即可求出S△ABO;(3)由(2)中的S△ABO,可推出S△APC的面积,求出yp,继而求出点P的坐标,将点C和点P的坐标联立方程组求出k和b的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y1=-x+2,令x=0,得y1=2,∴B(0,2),令y1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S△ABO=OA•OB=×3×2=3;(3)∵S△ABO=×3=,点P在第一象限,∴S△APC=AC•yp=×(3-1)×yp=,解得:yp=,又点P在直线y1上,∴=-x+2,解得:x=,∴P点坐标为(,),将点C(1,0)、P(,)代入y=kx+b中,得,解得:.故可得直线CP的函数表达式为y=-1x+1.【点睛】本题是一道一次函数综合题,考查了一次函数的性质、三角形的面积公式、待定系数法求解一次函数的解析式等知识点,解题关键是根据S△APC=AC•yp求出点P的纵坐标,难度中等.24、(1)见解析;(2)上述结论不成立.【解析】试题分析:(1)由垂线的定义和角的互余关系得出由AAS证明≌,得出对应边相等由即可得出结论;

(2)由垂线的定义和角的互余关系得出由AAS证明≌,得出对应边相等由之间的和差关系,即可得出结论.试题解析:(1)∵∠BAC=,∴∠BAD+∠CAE=,∵BD⊥l,CE⊥l,∴∠ADB=∠CEA=,∴∠BAD+∠ABD=,∴∠ABD=∠CAE.在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AD+AE=DE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论