2023届贵州省兴仁县数学八上期末质量检测模拟试题含解析_第1页
2023届贵州省兴仁县数学八上期末质量检测模拟试题含解析_第2页
2023届贵州省兴仁县数学八上期末质量检测模拟试题含解析_第3页
2023届贵州省兴仁县数学八上期末质量检测模拟试题含解析_第4页
2023届贵州省兴仁县数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点,都在直线上,则与的大小关系是()A. B. C. D.不能比较2.要使(﹣6x3)(x2+ax﹣3)的展开式中不含x4项,则a=()A.1 B.0 C.﹣1 D.3.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别表示下列六个字兴、爱、我、义、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码可能是()A.我爱美 B.兴义游 C.美我兴义 D.爱我兴义4.如果实数a,b满足a+b=6,ab=8,那么a2+b2=()A.36 B.20 C.52 D.145.如图,在Rt△ABC中,∠ACB=90°,BC=5cm,在AC上取一点E使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=12cm,则AE的长为()A.5cm B.6cm C.7cm D.8cm6.在式子,,,中,分式的个数是()A.1 B.2 C.3 D.47.石墨烯是世界上最薄也是最坚硬的纳米材料,它的理论厚度仅0.00000000034m,将这个数用科学计数法表示为()A. B. C. D.8.如图,在△ABC中,CD平分∠ACB交AB于点D,于点E,于点F,且BC=4,DE=2,则△BCD的面积是()A.4 B.2 C.8 D.69.用我们常用的三角板,作的高,下列三角板位置放置正确的是()A. B. C. D.10.如图,AD是△ABC的角平分线,若AB:AC=9:4,则BD:CD等于()A.3:2 B.9:4 C.4:9 D.2:3二、填空题(每小题3分,共24分)11.要使在实数范围内有意义,x应满足的条件是_____.12.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是_____.13.方程的根是______.14.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.15.如图,在四边形中,已知,平分,,那么__________.16.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.17.在等腰三角形ABC中,∠A=110°,则∠B=_______.18.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.三、解答题(共66分)19.(10分)如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.

(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.(6分)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)21.(6分)如图,在平面直角坐标系中,线段的两个端点的坐标分别为.(1)画出线段关于轴对称的对应线段,再画出线段关于轴对称的对应线段;(2)点的坐标为_________;(3)若此平面直角坐标系中有一点,先找出点关于轴对称的对应点,再找出点关于轴对称的对应点,则点的坐标为_______;22.(8分)面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.每名熟练工和新工人每月分别可以安装多少辆电动汽车?如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?23.(8分)用消元法解方程组时,两位同学的解法如下:解法一:解法二:由②,得,③由①-②,得.把①代入③,得.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“”.(2)请选择一种你喜欢的方法,完成解答.24.(8分)解不等式组:25.(10分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.26.(10分)已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用一次函数的性质解决.直线系数,可知y随x的增大而增大,-4<1,则y1<y1.【详解】解:∵直线上,∴函数y随x的增大而增大,∵-4<1,∴y1<y1.故选:A.【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.2、B【分析】原式利用单项式乘多项式的法则计算,根据结果不含x4项求出a的值即可.【详解】解:原式=−6x5−6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.【点睛】本题考查了单项式乘多项式的法则,根据不含哪一项则该系数为零是解题的关键.3、D【分析】将所给整式利用提取公因式法和平方差公式进行因式分解,再与所给的整式与对应的汉字比较,即可得解.【详解】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b)∵x﹣y,x+y,a﹣b,a+b四个代数式分别对应:爱、我、兴、义∴结果呈现的密码可能是爱我兴义.故选:D.【点睛】本题主要考查因式分解,掌握提取公因式和因式分解的方法是解题的关键.4、B【分析】原式利用完全平方公式变形,将已知等式整体代入计算即可求出值.【详解】解:∵a+b=6,ab=8,

∴,

故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5、C【分析】根据已知条件证明Rt△ABC≌Rt△FCE,即可求出答案.【详解】∵EF⊥AC,∴∠CEF=90°,在Rt△ABC和Rt△FCE中,∴Rt△ABC≌Rt△FCE(HL),∴AC=FE=12cm,∵EC=BC=5cm,∴AE=AC-EC=12-5=7cm,故选:C.【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.6、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】,分母中均不含有字母,因此它们是整式,而不是分式.其余两个式子的分母中含有字母,因此是分式.故选:B.【点睛】本题考查了分式的定义,特别注意π不是字母,是常数,所以不是分式,是整式.7、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×1-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000000034=3.4×1-1.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×1-n,解决本题的关键是要熟练掌握科学记数法的表示形式.8、A【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,

∴DF=DE=2,∴;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.9、D【解析】根据高线的定义即可得出结论.【详解】A、B、C都不是△ABC的边上的高.故选:D.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.10、B【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线的性质,∠DBE=∠C,∠E=∠CAD可得,△BDE∽△CDA,再利用相似三角形的性质可有,再利用AD是∠BAC角平分线,又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【详解】过点B作BE∥AC交AD延长线于点E,∵BE∥AC∴∠DBE=∠C,∠E=∠CAD∴△BDE∽△CDA∴又∵AD是∠BAC角平分线∴∠E=∠DAC=∠BAD∴BE=AB∴∵AB:AC=9:4∴BD:CD=9:4故选:B【点睛】本题考查了平行线的性质定理、相似三角形的判定和性质,角平分线性质.二、填空题(每小题3分,共24分)11、x≥1【分析】根据被开方数大于等于0列式求解即可.【详解】要使在实数范围内有意义,x应满足的条件x﹣1≥0,即x≥1.故答案为:x≥1【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12、【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把代入,得出,函数和的图象交于点,即,同时满足两个一次函数的解析式,所以关于,的方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13、,【分析】先移项得到x(x+1)-1(x+1)=0,再提公因式得到(x+1)(x-1)=0,原方程化为x+1=0或x-1=0,然后解一次方程即可.【详解】解:∵x(x+1)-1(x+1)=0,

∴(x+1)(x-1)=0,

∴x+1=0或x-1=0,

∴x1=-1,x1=1.

故答案为:x1=-1,x1=1.【点睛】本题考查了解一元二次方程—因式分解法:先把方程,右边化为0,再把方程左边因式分解,这样把原方程转化为两个一元一次方程,然后解一次方程即可得到原方程的解.14、3.1【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.1(精确到0.01).

故答案为3.1.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15、2【分析】根据平行线的性质和等腰三角形的判定和性质定理即可得到结论.【详解】,,平分,,,.故答案为:.【点睛】本题考查了等腰三角形的判定和性质,平行线的性质,熟练掌握等腰三角形的判定定理是解题的关键.16、12°.【解析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.17、350【分析】根据钝角只能是顶角和等腰三角形的性质即可求出底角.【详解】∵在等腰三角形中,∠A=110°>90°,∴∠A为顶角,∴∠B=故答案为:35°.【点睛】本题考查等腰三角形的性质,要注意钝角只能是等腰三角形的顶角.18、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为三、解答题(共66分)19、(1)见解析;(2)18cm【分析】(1)连接BE、EC,只要证明Rt△BFE≌Rt△CGE,得BF=CG,再证明Rt△AFE≌Rt△AGE得:AF=AG,根据线段和差定义即可解决.(2由AG=5cm可得AB+AC=10cm即可得出△ABC的周长.【详解】(1)延长AB至点M,过点E作EF⊥BM于点F∵AE平分∠BACEG⊥AC于点G∴EG=EF,∠EFB=∠EGC=90°连接BE,EC∵点D是BC的中点,DE⊥BC∴BE=EC在Rt△BFE与Rt△CGE中∴Rt△BFE≌Rt△CGE(HL)∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC=AB+BF+AG=AF+AG在Rt△AFE与Rt△AGE中∴Rt△AFE≌Rt△AGE(HL)∴AF=AG∴AB+AC=2AG(2)∵AG=5cm,AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC的周长为AB+AC+BC=8+10=18cm.【点睛】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.20、(1)详见解析;(2)y=2x+2(0≤x≤16),当x=0时,y最小=2,当x=16时,y最大=1;(3)当x=32时,y最小=2;当x=16时,y最大=1.【解析】试题分析:(1)如图1,分别作出点A1、B1、C1关于直线QN的对称点A2、B2、C2,在顺次连接这三点即可得到所求三角形;(2)如图2,当△ABC以每秒1个单位长的速度向下平移x秒时,则有:MA=x,MB=x+4,MQ=20,由题意可得:y=S梯形QMBC﹣S△AMQ﹣S△ABC,由此就可得到y与x之间的函数关系式,结合x的取值范围是即可求得y的最大值和最小值;(3)如图2,可用如下两种方法解答本问:方法一:当△ABC继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x﹣16)=36﹣x,PC=PB﹣4=32﹣x,由y=S梯形BAQP﹣S△CPQ﹣S△ABC即可列出y与x之间的函数关系式,结合x的取值范围即可求得y的最大值和最小值;方法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ABC在自上向下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.试题解析:(1)如图1,△A2B2C2是△A1B1C1关于直线QN成轴对称的图形(2)当△ABC以每秒1个单位长的速度向下平移x秒时(如图2),则有:MA=x,MB=x+4,MQ=20,y=S梯形QMBC﹣S△AMQ﹣S△ABC=(4+20)(x+4)﹣×20x﹣×4×4=2x+2(0≤x≤16).由一次函数的性质可知:当x=0时,y取得最小值,且y最小=2,当x=16时,y取得最大值,且y最大=2×16+2=1;(3)解法一:当△ABC继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x﹣16)=36﹣x,PC=PB﹣4=32﹣x,∴y=S梯形BAQP﹣S△CPQ﹣S△ABC=(4+20)(36﹣x)﹣×20×(32﹣x)﹣×4×4=﹣2x+104(16≤x≤32).由一次函数的性质可知:当x=32时,y取得最小值,且y最小=﹣2×32+104=2;当x=16时,y取得最大值,且y最大=﹣2×16+104=1.解法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ABC在自上至下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.当x=16时,y取得最大值,且y最大=1,当x=32时,y取得最小值,且y最小=2.21、(1)详见解析;(2);(3)【分析】(1)根据轴对称图形的作图方法画对称线段即可;(2)根据图像可得点坐标;(3)根据关于x轴对称的特点可得点坐标,再根据关于y轴对称的特点可得点坐标.【详解】解:(1)如图,线段,线段即为所求.(2)由图得(3)由点关于轴对称,横坐标不变,纵坐标互为相反数,可得对应点,由关于轴对称,纵坐标不变,横坐标互为相反数可得其对应点.所以点的坐标为.【点睛】本题考查了平面直角坐标系中的轴对称,熟练掌握关于x轴和y轴的对称特点是解题的关键.22、(1)每名熟练工和新工人每月分别可以安装、辆电动汽车.工厂有种新工人的招聘方案.①新工人人,熟练工人;②新工人人,熟练工人;③新工人人,熟练工人;④新工人人,熟练工人.当,时(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【解析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解;(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,结合(2)进行分析即可得.【详解】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据题意,得,解得,答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车;设工厂有名熟练工,根据题意,得,,,又,都是正整数,,所以,,,.即工厂有种新工人的招聘方案.①,,即新工人人,熟练工人;②,,即新工人人,熟练工人;③,,即新工人人,熟练工人;④,,即新工人人,熟练工人;结合知:要使新工人的数量多于熟练工,则,;或,;或,,根据题意,得,要使工厂每月支出的工资总额(元)尽可能地少,则应最大,显然当,时,(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【点睛】本题考查了二元一次方程组的应用、一次方程组的应用,理解题意,正确找准等量关系以及各量间的数量关系是解题的关键.23、(1)解法一中的计算有误;(2)原方程组的解是【分析】利用加减消元法或代入消元法求解即可.【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:,解得:,把代入①,得:,解得:,所以原方程组的解是.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24、【分析】分别把两个不等式解出来,然后找共同部分即是不等式组的解集.【详解】原不等式可化为,即不等式组的解集是【点睛】本题主要考查一元一次不等式组的解法,掌握一元一次不等式的解法是解题的关键.25、出发或小时时,行进中的两车相距8千米

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论