




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各运算中,计算正确的是()A. B. C. D.2.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤3.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2 B.a=5,b=12,c=13 C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:54.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折 B.八折 C.七折 D.六折5.下列图形中是轴对称图形的是().A. B. C. D.6.若分式的值为零,则x的值是()A.3 B.-3 C.±3 D.07.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣28.如图,在中,AB=8,BC=6,AB、BC边上的高CE、AD交于点H,则AD与CE的比值是()A. B.C. D.9.在平面直角坐标系中,点到原点的距离是()A.1 B. C.2 D.10.在一次数学实践活动中,杨阳同学为了估计一池塘边两点间的距离,如下图,先在池塘边取一个可以直接到达点和点的点连结测得,则间的距离不可能是()A. B. C. D.11.一次函数的图象与轴交点的坐标是()A.(0,2) B.(0,-2) C.(2,0) D.(-2,0)12.如果一个等腰三角形的两条边长分别为3和7,那么这个等腰三角形的周长为()A.13 B.17 C.13或17 D.以上都不是二、填空题(每题4分,共24分)13.如果实数,满足方程组,那么代数式的值为________.14.若等腰三角形顶角为70°,则底角为_____.15.当x=______________时,分式的值是0?16.如图,点在同一直线上,平分,,若,则__________(用关于的代数式表示).17.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.18.如图,已知,若以“SAS”为依据判定≌,还需添加的一个直接条件是______.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.20.(8分)先化简,再求值:,其中且为整数.请你从中选取一个喜欢的数代入求值.21.(8分)在平面直角坐标系中,直线平行于轴并交轴于,一块三角板摆放其中,其边与轴分别交于,两点,与直线分别交于,两点,(1)将三角板如图1所示的位置摆放,请写出与之间的数量关系,并说明理由.(2)将三角板按如图2所示的位置摆放,为上一点,,请写出与之间的数量关系,并说明理由.22.(10分)已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:∠BAD=∠CAD.23.(10分)在中,,,点是上一点.(1)如图,平分.求证:;(2)如图,点在线段上,且,,求证:.(3)如图,,过点作交的延长线于点,连接,过点作交于,求证:.24.(10分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.25.(12分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.26.计算:(1)9a5b4÷3a2b4﹣a•(﹣5a2)(2)(x﹣2y)(x+2y﹣1)+4y2
参考答案一、选择题(每题4分,共48分)1、C【分析】根据积的乘方、同底数幂的除法、多项式的乘法逐项判断即可.【详解】A.,错误;B.,错误;C.,正确;D.,错误.故选C.【点睛】本题考查积的乘方、同底数幂的除法、多项式的乘法等知识,熟练掌握各计算公式是解题的关键.2、D【分析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2=,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.3、D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴此三角形是直角三角形,故本选项不符合题意;
C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C
∴∠A=90°,
∴此三角形是直角三角形,故本选项不符合题意;
D、设∠A=3x,则∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,解得x=15°
∴∠C=5×15°=75°,
∴此三角形不是直角三角形,故本选项符号要求;
故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.4、A【分析】利润率不低于12.5%,即利润要大于或等于80×12.5%元,设商品打x折,根据打折之后利润率不低于12.5%,列不等式求解.【详解】解:设商品打x折,由题意得,100×0.1x−80≥80×12.5%,解得:x≥9,即商品最多打9折.故选:A.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义是解题的关键.5、D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,本选项错误;
B、不是轴对称图形,本选项错误;
C、不是轴对称图形,本选项错误;
D、是轴对称图形,本选项正确.
故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、A【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得x-2=1且x+2≠1,
解得x=2.
故选:A.【点睛】分式值为1,要求分子为1,分母不为1.7、B【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式的结构特征是解题的关键.8、A【分析】根据三角形的面积公式即可得.【详解】由题意得:解得故选:A.【点睛】本题考查了三角形的高,利用三角形的面积公式列出等式是解题关键.9、D【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;
(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点到原点的距离是故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.10、D【分析】根据三角形的三边关系即可得出结论.【详解】解:∵中,∴15-12<AB<15+12∴3<AB<27由各选项可知:只有D选项不在此范围内故选D.【点睛】此题考查的是三角形三边关系的应用,掌握三角形的三边关系是解决此题的关键.11、D【分析】计算函数值为0所对应的自变量的取值即可.【详解】解:当y=0时,x+2=0,解得x=-2,所以一次函数的图象与x轴的交点坐标为(-2,0).故选:D.【点睛】本题考查了一次函数图象与x轴的交点:求出函数值为0时的自变量的值即可得到一次函数与x轴的交点坐标.12、B【解析】当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故选B.二、填空题(每题4分,共24分)13、1【详解】原式,方程组的解为,当,时,原式14、55°【分析】等腰三角形的两个底角相等,三角形的内角和是180°,则一个底角度数=(180°−顶角度数)÷1.【详解】等腰三角形顶角为70°,则底角为(180°−70°)÷1=110°÷1=55°.故答案为55°.【点睛】解决本题的关键是明确等腰三角形的两个底角相等,三角形的内角和是180°.15、-1【解析】由题意得,解之得.16、(90-α)【解析】根据∠,可以得到∠EBD,再根据BF平分∠EBD,CG∥BF,即可得到∠GCD,本题得以解决.【详解】∵∠EBA=,∠EBA+∠EBD=180,
∴∠EBD,
∵BF平分∠EBD,
∴∠FBD=∠EBD=(180)=90,
∵CG∥BF,
∴∠FBD=∠GCD,
∴∠GCD=90=,
故答案为:(90-).【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.18、AB=BC【解析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,
∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,
故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.三、解答题(共78分)19、(1)见解析;(2)72°【分析】(1)直接利用角平分线的作法得出BD;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【详解】(1)如图所示:BD即为所求;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°.【点睛】此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.20、;当时,原式【分析】根据分式的加法和除法可以化简题目中的式子,然后从且为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:,∵且为整数,
∴当m=0时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1);(2)∠NEF+∠AOG=90°【分析】(1)延长AC交直线DM于点P,通过平行线的性质得出∠AOG=∠APD,再由垂直关系得出与之间的数量关系;(2)延长AC交直线DM于点Q,通过平行线的性质得出∠AOG=∠AQD,再根据及垂直关系得出与之间的数量关系即可.【详解】解:(1)如图,延长AC交直线DM于点P,∵DM∥x轴,∴∠AOG=∠APD,又∵∠ACB=90°∴∠PCB=90°,∴∠APD+∠CEP=90°,又∵∠CEF+∠CEP=180°,∴∠CEF-∠APD=90°,即.(2)如图,延长AC交直线DM于点Q,∵DM∥x轴,∴∠AOG=∠AQD,又∵∠ACB=90°∴∠QCB=90°,∴∠AQD+∠CEQ=90°,又∵∠CEQ+∠CEF=180°∴∠NED=∠CEQ,∴∠NED+∠AQD=90°,即∠NEF+∠AOG=90°.【点睛】本题考查了平行线的性质及角的运算问题,解题的关键是做出辅助线,通过平行线的性质及垂直关系进行角度的运算.22、证明见解析【分析】求出∠BED=∠CFD=90°,根据AAS推出△BED≌△CFD,根据全等三角形的性质得出DE=DF,根据角平分线性质得出即可.【详解】证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴∠BAD=∠CAD.23、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长AC至E,使CE=CD,利用AAS证出△BAD≌△EAD,从而得出AB=AE,即可证出结论;(2)过点C作CF⊥EC交AD的延长线于点F,连接BF,先利用SAS证出△ACE≌△BCF,从而证出AE=BF,∠CEA=∠CFB,再证出∠EFB=90°,利用30°所对的直角边是斜边的一半即可证出结论;(3)过点C作CE⊥AM于M,先利用AAS证出△CNA≌△CMB,即可证出CN=CM,根据等腰三角形的性质可得NE=EM,然后利用AAS证出△CED≌△BMD,从而得出ED=DM,然后根据线段的关系即可得出结论.【详解】解:(1)延长AC至E,使CE=CD∵,∴∠ECD=180°-∠ACB=90°,∠B=∠CAB=(180°-∠ACB)=45°∴△CDE为等腰三角形∴∠E=45°∴∠B=∠E∵平分∴∠BAD=∠EAD在△BAD和△EAD中∴△BAD≌△EAD∴AB=AE∵AE=AC+CE=AC+CD∴AB=AC+CD(2)过点C作CF⊥EC交AD的延长线于点F,连接BF∵∠CED=45°∴△CEF为等腰直角三角形∴CE=CF,∠CFE=∠CEF=45°∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB,∴∠ACE+∠ECB=90°,∠BCF+∠ECB=90°∴∠ACE=∠BCF在△ACE和△BCF中∴△ACE≌△BCF∴AE=BF,∠CEA=∠CFB∵∠CEA=180°-∠CEF=135°∴∠CFB=135°∴∠EFB=∠CFB-∠CFE=90°在Rt△EFB中,∠BEF=30°∴BE=2BF∴BE=2AE(3)过点C作CE⊥AM于M,∵△ABC为等腰直角三角形∴∠ACB=90°,CA=CB∵CN⊥CM,BM⊥AM∴∠NCM=90°,∠BMA=90°∴∠ACN+∠NCB=90°,∠BCM+∠NCB=90°,∴∠ACN=∠BCM∴∠CNA=∠NCM+∠CMN=90°+∠CMN=∠CMB在△CNA和△CMB中∴△CNA≌△CMB∴CN=CM∴△CNM为等腰直角三角形∴NE=EM在△CE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3方土方合同协议
- 上门喂狗协议书范本
- 庙会承包协议书范本
- it产品安装合同协议
- app委托制作合同协议
- 2025运输合同协议
- 高岭土合同协议
- 2025路桥合同协议
- 建设用地房出售合同协议
- 驾驶员业务外委合同协议
- 硫酸车间焚硫炉烘炉及锅炉煮炉方案资料
- 大班语言《扁担和板凳》
- 新产品试产管理程序
- 锚索抗滑桩毕业设计(湖南工程学院)
- 各国关于数据与个人隐私的法律规定
- 人教版(PEP)五年级英语下册(U1-U4)单元专题训练(含答案)
- 维生素K2行业研究、市场现状及未来发展趋势(2020-2026)
- 定远县蔡桥水库在建工程实施方案
- 绘本故事《三只小猪盖房子》课件
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 部编版八年级语文下册写作《学写读后感》精美课件
评论
0/150
提交评论