2023届常州市“12校合作联盟”高三数学第一学期期末达标检测试题含解析_第1页
2023届常州市“12校合作联盟”高三数学第一学期期末达标检测试题含解析_第2页
2023届常州市“12校合作联盟”高三数学第一学期期末达标检测试题含解析_第3页
2023届常州市“12校合作联盟”高三数学第一学期期末达标检测试题含解析_第4页
2023届常州市“12校合作联盟”高三数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.42.已知角的终边经过点,则的值是A.1或 B.或 C.1或 D.或3.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.4.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.5.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.6.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.7.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值8.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.9.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.10.设,则()A. B. C. D.11.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.12.双曲线的渐近线方程是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若,则的取值范围是__14.已知函数,在区间上随机取一个数,则使得≥0的概率为.15.设函数在区间上的值域是,则的取值范围是__________.16.已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.19.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.20.(12分)在中,,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.21.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.22.(10分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.2、B【解析】

根据三角函数的定义求得后可得结论.【详解】由题意得点与原点间的距离.①当时,,∴,∴.②当时,,∴,∴.综上可得的值是或.故选B.【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.3、C【解析】

作,;,由题意,由二倍角公式即得解.【详解】由题意,,准线:,作,;,设,故,,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.4、B【解析】

基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.5、B【解析】

根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.6、B【解析】

求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.7、B【解析】

根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.8、A【解析】

根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.9、B【解析】

由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.10、D【解析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.11、A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.12、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据分段函数的性质,即可求出的取值范围.【详解】当时,,,当时,,所以,故的取值范围是.故答案为:.【点睛】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.14、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得≥0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.15、.【解析】

配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【点睛】本题考查函数值域,考查数形结合思想,属于基础题.16、2【解析】

求出焦点到渐近线的距离就可得到的等式,从而可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,由得,∴,,∴.故答案为:2.【点睛】本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,有把握;(2)分布列见解析,.【解析】

(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012【点睛】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.18、(1),;(2),,.【解析】

(1)把曲线的参数方程与曲线的极坐标方程分别转化为直角坐标方程;(2)利用图象求出三个点的极径与极角.【详解】解:(1)由消去参数得,即曲线的普通方程为,又由得即为,即曲线的平面直角坐标方程为(2)∵圆心到曲线:的距离,如图所示,所以直线与圆的切点以及直线与圆的两个交点,即为所求.∵,则,直线的倾斜角为,即点的极角为,所以点的极角为,点的极角为,所以三个点的极坐标为,,.【点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.19、(Ⅰ),曲线是以为圆心,为半径的圆;(Ⅱ).【解析】

(Ⅰ)由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程.(Ⅱ)令,,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【详解】解:(Ⅰ)由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.(Ⅱ)令,,,,面积的取值范围为【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题.20、(1)1;(2)5.【解析】

(1)由同角三角函数关系求得,再由两角差的正弦公式求得,最后由正弦定理构建方程,求得答案.(2)在中,由正弦定理构建方程求得AB,再由任意三角形的面积公式构建方程求得BC,最后由余弦定理构建方程求得AC.【详解】(1)据题意,,且,所以.所以.在中,据正弦定理可知,,所以.(2)在中,据正弦定理可知,所以.因为的面积为14,所以,即,得.在中,据余弦定理可知,,所以.【点睛】本题考查由正弦定理与余弦定理解三角形,还考查了由同角三角函数关系和两角差的正弦公式化简求值,属于简单题.21、(1)证明见解析;(2).【解析】

(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论