版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°2.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形的面积等于一条边的长与该边上的高的乘积的一半D.同位角相等3.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形 B.等边三角形C.钝角三角形 D.直角三角形4.如图所示,四边形是边长为的正方形,,则数轴上点所表示的数是()A. B. C. D.5.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m>nx﹣5n>0的整数解为()A.3 B.4 C.5 D.66.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=1.,则∠A的度数是()A.35 B.40 C.70 D.1107.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E8.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a) B.x2+a2+2axC.(x-a)(x-a) D.(x+a)a+(x+a)x9.已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙 B.只有丙 C.甲和乙 D.乙和丙10.如图,∥,点在直线上,且,,那么=()A.45° B.50° C.55° D.60°二、填空题(每小题3分,共24分)11.在平面直角坐标系中,,直线与轴交于点,与轴交于点为直线上的一个动点,过作轴,交直线于点,若,则点的横坐标为__________.12.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.13.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为_______14.求值:____.15.当x_____时,分式有意义.16.三角形两边的中垂线的交点到三个顶点的距离的大小关系是_____.17.若一个多边形的内角和是900º,则这个多边形是边形.18.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.三、解答题(共66分)19.(10分)求证:线段垂直乎分线上的点到线段两端的距离相等.已知:求证:证明:20.(6分)如图,已知,依据作图痕迹回答下面的问题:(1)和的位置关系是_________________;(2)若,时,求的周长;(3)若,,求的度数.21.(6分)如图,在平面直角坐标系中,点、点,点同时满足下面两个条件:①点到、两点的距离相等;②点到的两边距离相等.(1)用直尺和圆规作出符合要求的点(不写作法,保留作图痕迹);(2)写出(1)中所作出的点的坐标.22.(8分)(1)分解因式:3ax2+6axy+3ay2(2)化简:23.(8分)如图,直线与双曲线交于A点,且点A的横坐标是1.双曲线上有一动点C(m,n),.过点A作轴垂线,垂足为B,过点C作轴垂线,垂足为D,联结OC.(1)求的值;(2)设的重合部分的面积为S,求S与m的函数关系;(3)联结AC,当第(2)问中S的值为1时,求的面积.24.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请作出△ABC关于y轴对称的△A1B1C1;(2)△A1B1C1的面积是______.25.(10分)如图,在中,∠CAB=90°,AC=AB,射线AM与CB交于H点,分别过C点、B点作CF⊥AM,BE⊥AM,垂足分别为F点和E点.(1)若AF=4,AE=1,请求出AB的长;(2)若D点是BC中点,连结FD,求证:BE=DF+CF.26.(10分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.(1)求a、b及k的值;(2)连接OA,OB,求△AOB的面积.
参考答案一、选择题(每小题3分,共30分)1、C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.
显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.2、D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;
B、三角形两边之和大于第三边,所以B选项为真命题;
C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,
D、两直线平行,同位角相等,所以D选项为假命题.
故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、D【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.【详解】解:∵(a-3)2≥0,b-4
≥0,|c-5|≥0,
∴a-3=0,b-4=0,c-5=0,
解得:a=3,b=4,c=5,
∵3
2
+4
2
=9+16=25=5
2
,
∴a
2
+b
2
=c
2
,∴以a,b,c为边的三角形是直角三角形.
故选D.【点睛】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.4、D【分析】连接AC,根据勾股定理求出其长度,,再减1求相反数即为点P表示的数.【详解】解:如图,连接AC,在中,,所以,所以,所以点表示的数为.故选:D.【点睛】本题主要考查在数轴上用勾股定理求无理数长度的线段,熟练掌握该方法是解答关键.5、B【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【详解】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为1.故选:B.【点睛】此题主要考查函数与不等式的关系,解题的关键是熟知函数图像交点的几何含义.6、B【解析】设∠A的度数是x,则∠C=∠B=,∵BD平分∠ABC交AC边于点D∴∠DBC=,∴++1=180°,∴x=40°,∴∠A的度数是40°.故选:B.7、C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8、C【详解】解:根据图可知,S正方形=(x+a)2=x2+2ax+a2=(x+a)a+(x+a)x,故选C.9、D【分析】根据全等三角形的判定ASA,SAS,AAS,SSS,看图形中含有的条件是否与定理相符合即可.【详解】甲、边a、c夹角不是50°,∴甲错误;乙、两角为58°、50°,夹边是a,符合ASA,∴乙正确;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选:D.【点睛】本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行判断是解此题的关键.10、C【解析】根据∥可以推出,根据平角的定义可知:而,∴,∴;∵∴,∴.故应选C.二、填空题(每小题3分,共24分)11、2或【分析】先直线AB的解析式,然后设出点P和点Q的坐标,根据列方程求解即可.【详解】设直线AB的解析式为y=kx+b,把A(3,0),B(0,3)代入得,解得,∴y=-x+3,把x=0代入,得,∴D(0,1),设P(x,2x+1),Q(x,-x+3)∵,∴,解得x=2或x=,∴点的横坐标为2或.故答案为:2或.【点睛】本题考查了待定系数法求一次函数解析式,坐标图形的性质,以及两点间的距离,根据两点间的距离列出方程是解答本题的关键.12、(a+1)1.【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.13、(1,2)【详解】关于x轴对称,则两个点的横坐标不变,纵坐标互为相反数,故B点的坐标为(1,2).14、.【分析】由二次根式的性质,即可得|3|,继而求得答案.【详解】解:∵3,∴3<0,∴|3|=3.故答案为:3.【点睛】此题考查了二次根式的化简与性质以及绝对值的性质.注意:.15、≠【分析】分母不为零,分式有意义,根据分母不为1,列式解得x的取值范围.【详解】当1-2x≠1,即x≠时,分式有意义.故答案为x≠.【点睛】本题主要考查分式有意义的条件:分式有意义,则分母不能为1.16、相等【分析】根据线段垂直平分线的性质得出AP=BP,AP=CP,即可得出答案.【详解】解:相等,理由是:∵P是线段AB和线段AC的垂直平分线的交点,∴AP=BP,AP=CP,∴AP=BP=CP,即三角形两边的中垂线的交点到三个顶点的距离的大小关系是相等,故答案为:相等.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.17、七【分析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故答案为.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共66分)19、详见解析【分析】根据命题写出“已知”、“求证”,再证明△AMN≌△BMN(SAS)即可.【详解】解:已知:如图,线段AB的中点为M,过点M作MN⊥AB于点M,其中N为直线MN上任意不同于M的一点,连接AN,BN.求证:AN=BN.证明:∵MN⊥AB,∴∠NMA=∠NMB=90°,∵AB的中点为M,∴AM=BM,又∵MN=MN,∴△AMN≌△BMN(SAS),∴AN=BN,命题得证.【点睛】本题考查了命题的证明,涉及垂直平分线性质的证明,三角形全等的判定,解题的关键是根据命题写出“已知”、“求证”,并找出全等三角形.20、(1)MN垂直平分AC;(2)8;(3)90°.【分析】(1)根据作图痕迹可知MN为所作的AC的垂直平分线;(2)根据垂直平分线的性质可得AE=EC,从而将△ABE周长转化为AB+BC;(3)由条件可得△ABE是等边三角形,再利用等腰三角形的性质和三角形内角和得出∠BAC的度数.【详解】解:(1)由作图痕迹可知:MN是线段AC的垂直平分线,∴和的位置关系是:MN垂直平分AC;(2)∵MN垂直平分AC,∴AE=EC,∵,,∴△ABE的周长=AB+BE+AE=AB+BC=8;(3)∵,,∴△ABE是等边三角形,∠B=∠BAE,∵AE=EC,∴∠C=∠EAC,∵∠B+∠BAE+∠C+∠EAC=180°,∴∠BAC=∠BAE+∠EAC=90°.【点睛】本题考查了尺规作图,等腰三角形的性质,三角形内角和,垂直平分线的性质,解题的关键是转化思想,将三角形的周长转化为线段之和.21、(1)见解析;(2)(2,2).【分析】(1)先作线段AB的垂直平分线l,再作∠xOy的平分线OC,它们的交点即为所要求作的点P;(2)由于P在线段AB的垂轴平分线上,则P点的横只能为2,再利用P点在第一象限的角平分线上,则P点的横纵坐标相等,从而得到点P的坐标.【详解】(1)如图,点P为所作;(2)点P的坐标(2,2).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22、(1)3a(x+y)2;(2)a+b【分析】(1)原式先提公因式,再运用完全平方公式分解;(2)原式括号内先通分,分子分解因式后再约分即得结果.【详解】解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式===a+b.【点睛】本题考查了多项式的因式分解和分式的混合运算,属于基础题型,熟练掌握分解因式的方法和分式的混合运算法则是解题关键.23、(1);(3);(3).【分析】(1)由题意列出关于k的方程,求出k的值,即可解决问题.(3)借助函数解析式,运用字母m表示DE、OD的长度,即可解决问题.(3)首先求出m的值,求出△COD,△AOB的面积;求出梯形ABDC的面积,即可解决问题.【详解】(1)设A点的坐标为(1,);由题意得:,解得:k=3,即k的值为3.(3)如图,设C点的坐标为C(m,n).则n=m,即DE=m;而OD=m,∴S=OD•DE=m×m=m3,即S关于m的函数解析式是S=m3.(3)当S=1时,m3=1,解得m=3或-3(舍去),∵点C在函数y=的图象上,∴CD==1;由(1)知:OB=1,AB=3;BD=1-3=3;∴S梯形ABDC=(1+3)×3=4,S△AOB=×1×3=1,S△COD=×3×1=1;∴S△AOC=S梯形ABDC+S△COD-S△AOB=4+1-1=4.【点睛】该题主要考查了一次函数与反比例函数图象的交点问题;解题的关键是数形结合,灵活运用方程、函数等知识来分析、判断、求解或证明.24、(1)见解析;(2)4.【分析】(1)可先由关于y轴对称的点的坐标的特征求出点A1,B1,C1的坐标,再描点,连线即可;(2)如图所示,作矩形EA1FM,求矩形的面积与△A1EC1,△C1MB1,△B1FA1三个三角形的面积差即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,作矩形EA1FM,则S△A1B1C1=S矩形EA1FM﹣S△A1EC1﹣S△C1MB1﹣S△B1FA1=3×4﹣×3×2﹣×1×2﹣×2×4=4,故答案为:4.【点睛】此题考查的是作关于y轴对称的图形和求格点中图形的面积,掌握关于y轴对称的图形的画法和用矩形框住三角形,然后用矩形的面积减去三个直角三角形的面积是解决此题的关键.25、(1);(2)见解析【分析】(1)证明△ABE≌△CAF得BE=AF,进而由勾股定理求得AB;(2)连接AD、DE,证明△ADE≌△CDF得到DE=DF,进而得EF=DF,进而得出结论.【详解】解:(1)∵CF⊥AM,BE⊥AM,∴∠AEB=∠CFA=90°,∵∠CAB=90°,∴∠BAE+∠ABE=∠BAE+∠CAF=90°,∴∠ABE=∠CAF,∵AC=AB,∴△ABE≌△CAF(AAS),∴BE=AF=4,∴AB=;(2)连接AD、DE,∵△ABE≌△CAF,∴AE=CF,∵,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省常德市2024-2025学年三年级上学期11月期中英语试题
- DB11T 1126-2014 实验动物垫料
- 职业卫生和放射卫生国家随机监督抽查计划
- 海南省琼中黎族苗族自治县2024-2025学年七年级上学期期中地理试题(含答案)
- 职业学院通信技术专业人才培养方案
- 吊椅缆车市场需求与消费特点分析
- 人工日光浴晒黑服务行业相关项目经营管理报告
- 人教版英语八年级下册 Unit 1 Section B (3a-SC)随堂练习
- 人教版八年级下册 Section A 单词短语专练(2课时)
- 基因疗法研究行业市场调研分析报告
- 中间表模式接口相关-住院与his-adt方案
- 临床PCR检验的室内质控方法课件
- 拉曼光谱简介课件
- 计算机解决问题的过程-优质课课件
- 非线性电路分析基础讲解课件
- 高中通用技术-闭环控制系统的工作过程与方式-优质课课件
- 第四单元课文复习(课件)部编版语文五年级上册
- 2023年广东南海产业集团有限公司招聘笔试模拟试题及答案解析
- 作文讲评-“忘不了……”课件
- 深基坑安全管理(安全培训)课件
- 领导力与团队管理课件
评论
0/150
提交评论