专题11 电磁感应-2024年高考真题和模拟题物理分类汇编_第1页
专题11 电磁感应-2024年高考真题和模拟题物理分类汇编_第2页
专题11 电磁感应-2024年高考真题和模拟题物理分类汇编_第3页
专题11 电磁感应-2024年高考真题和模拟题物理分类汇编_第4页
专题11 电磁感应-2024年高考真题和模拟题物理分类汇编_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.(2024年湖北卷考题)1.《梦溪笔谈》中记录了一次罕见的雷击事件:房屋被雷击后,屋内的银饰、宝刀等金属熔化了,但是漆器、刀鞘等非金属却完好(原文为:有一木格,其中杂贮诸器,其漆器银扣者,银悉熔流在地,漆器曾不焦灼。有一宝刀,极坚钢,就刀室中熔为汁,而室亦俨然)。导致金属熔化而非金属完好的原因可能为()A.摩擦B.声波C.涡流D.光照2.(2024年江苏卷考题)9.如图所示,在绝缘的水平面上,有闭合的两个线圈a、b,线圈a处在匀强磁场中,现将线圈a从磁场中匀速拉出,线圈a、b中产生的感应电流方向分别是()A.顺时针,顺时针B.顺时针,逆时针C.逆时针,顺时针D.逆时针,逆时针3.(2024年湖南卷考题)4.如图,有一硬质导线Oabc,其中是半径为R的半圆弧,b为圆弧的中点,直线段Oa长为R且垂直于直径ac。该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。则O、a、b、c各点电势关系为()>φb>φc<φc>φb=φc=φc4.(2024年广东卷考题)4.电磁俘能器可在汽车发动机振动时利用电磁感应发电实现能量回收,结构如图甲所示。两对永磁铁可随发动机一起上下振动,每对永磁铁间有水平方向的匀强磁场,磁感应强度大小均为B.磁场中,边长为L的正方形线圈竖直固定在减震装置上。某时刻磁场分布与线圈位置如图乙所示,永磁铁振动时磁场分界线不会离开线圈。关于图乙中的线圈。下列说法正确的是()A.穿过线圈的磁通量为BL2B永磁铁相对线圈上升越高,线圈中感应电动势越大.C.永磁铁相对线圈上升越快,线圈中感应电动势越小D.永磁铁相对线圈下降时,线圈中感应电流的方向为顺时针方向5..(2024全国甲卷考题)8.如图,一绝缘细绳跨过两个在同一竖直面(纸面)内的光滑定滑轮,绳的一端连接一矩形金属线框,另一端连接一物块。线框与左侧滑轮之间的虚线区域内有方向垂直纸面的匀强磁场,磁场上下边界水平,在t=0时刻线框的上边框以不同的初速度从磁场下方进入磁场。运动过程中,线框始终在纸面内且上下边框保持水平。以向上为速度的正方向,下列线框的速度v随时间t变化的图像中可能正确的是()C.B.D.A.C.B.D.6.(2024年辽宁卷考题)9.如图,两条“∧”形的光滑平行金属导轨固定在绝缘水平面上,间距为L,左、右两导轨面与水平面夹角均为30°,均处于竖直向上的匀强磁场中,磁感应强度大小分别为2B和B。将有一定阻值的导体棒ab、cd放置在导轨上,同时由静止释放,两棒在下滑过程中始终与导轨垂直并接触良好,ab、cd的质量分别为2m和m,长度均为L。导轨足够长且电阻不计,重力加速度为g,两棒在下滑 A.回路中的电流方向为abcdaB.ab中电流趋于C.ab与cd加速度大小之比始终为2︰1D.两棒产生的电动势始终相等7.(2024年山东卷考题)8.如图甲所示,在-d≤x≤d,-d≤y≤d的区域中存在垂直Oxy平面向里、磁感应强度大小为B的匀强磁场(用阴影表示磁场的区域边长为2d的正方形线圈与磁场边界重合。线圈以y轴为转轴匀速转动时,线圈中产生的交变电动势如图乙所示。若仅磁场的区域发生了变化,线圈中产生的电动势变为图丙所示实线部分,则变化后磁场的区域可能为()A.B.C.D.8.(2024年湖南卷考题)8.某电磁缓冲装置如图所示,两足够长的平行金属导轨置于同一水平面内,导轨左端与一阻值为R的定值电阻相连,导轨BC段与B1C1段粗糙,其余部分光滑,AA1右侧处于竖直向下 的匀强磁场中,一质量为m的金属杆垂直导轨放置。现让金属杆以初速度v0沿导轨向右经过AA1进入磁场,最终恰好停在CC1处。已知金属杆接入导轨之间的阻值为R,与粗糙导轨间的摩擦因数为μ,AB=BC=d。导轨电阻不计,重力加速度为g,下列说法正确的是()A.金属杆经过BB1的速度为B.在整个过程中,定值电阻R产生的热量为μmgdC.金属杆经过AA1B1B与BB1C1C区域,金属杆所受安培力的冲量相同D.若将金属杆的初速度加倍,则金属杆在磁场中运动的距离大于原来的2倍9.(2024浙江1月卷考题)13.若通以电流I的圆形线圈在线圈内产生的磁场近似为方向垂直线圈平面的匀强磁场,其大小B=kI(k的数量级为10—4T/A)。现有横截面半径为1mm的导线构成半径为1cm的圆形线圈处于超导状态,其电阻率上限为10—26Ω.m。开始时线圈通有100A的电流,则线圈的感应电动势大小的数量级和一年后电流减小量的数量级分别为()10.(2024年山东卷考题)11.如图所示,两条相同的半圆弧形光滑金属导轨固定在水平桌面上,其所在平面竖直且平行,导轨最高点到水平桌面的距离等于半径,最低点的连线OO'与导轨所在竖直面垂直。空间充满竖直向下的匀强磁场(图中未画出导轨左端由导线连接。现将具有一定质量和电阻的金属棒MN平行OO'放置在导轨图示位置,由静止释放。MN运动过程中始终平行于OO'且与两导轨接触良好,不考虑自感影响,下列说法正确的是()A.MN最终一定静止于OO'位置B.MN运动过程中安培力始终做负功C.从释放到第一次到达OO'位置过程中,MN的速率一直在增大D.从释放到第一次到达OO'位置过程中,MN中电流方向由M到N11.(2024全国甲卷考题)12.如图,金属导轨平行且水平放置,导轨间距为L,导轨光滑无摩擦。定值电阻大小为R,其余电阻忽略不计,电容大小为C。在运动过程中,金属棒始终与导轨保持垂直。整个装置处于竖直方向且磁感应强度为B的匀强磁场中。(1)开关S闭合时,对金属棒施加以水平向右的恒力,金属棒能达到的最大速度为v0。当外力功率为定值电阻功率的两倍时,求金属棒速度v的大小。(2)当金属棒速度为v时,断开开关S,改变水平外力并使金属棒匀速运动。当外力功率为定值电阻功率的两倍时,求电容器两端的电压以及从开关断开到此刻外力所做的功。12.(2024年河北卷考题)15.如图,边长为2L的正方形金属细框固定放置在绝缘水平面上,细框中心O处固定一竖直细导体轴OO,。间距为L、与水平面成θ角的平行导轨通过导线分别与细框及导体轴相连。导轨和细框分别处在与各自所在平面垂直的匀强磁场中,磁感应强度大小均为B。足够长的细导体棒OA在水平面内绕O点以角速度①匀速转动,水平放置在导轨上的导体棒CD始终静止。OA棒在转动过程中,CD棒在所受安培力达到最大和最小时均恰好能静止。已知CD棒在导轨间的电阻值为R,电路中其余部分的电阻均不计,CD棒始终与导轨垂直,各部分始终接触良好,不计空气阻力,重力加速度大小为g。(1)求CD棒所受安培力的最大值和最小值。(2)锁定OA棒,推动CD棒下滑,撤去推力瞬间,CD棒的加速度大小为a,所受安培力大小等于(1)问中安培力的最大值,求CD棒与导轨间的动摩擦因数。13.(2024年安徽卷考题)15.如图所示,一“U”型金属导轨固定在竖直平面内,一电阻不计,质量为m的金属棒ab垂直于导轨,并静置于绝缘固定支架上。边长为L的正方形cdef区域内,存在垂直于纸面向外的匀强磁场。支架上方的导轨间,存在竖直向下的匀强磁场。两磁场的磁感应强度大小B随时间的变化关系均为B=kt(SIk为常数(k>0)。支架上方的导轨足够长,两边导轨单位长度的电阻均为r,下方导轨的总电阻为R。t=0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,整个运动过程中ab与两边导轨接触良好。已知ab与导轨间动摩擦因数为μ,重力加速度大小为g。不计空气阻力,两磁场互不影响。(1)求通过面积Scdef的磁通量大小随时间t变化的关系式,以及感应电动势的大小,并写出ab中电流的方向;(2)求ab所受安培力的大小随时间t变化的关系式;(3)求经过多长时间,对ab所施加的拉力达到最大值,并求此最大值。足够长的光滑水平导轨处于磁感应强度为B=0.5T的匀强磁场中,磁场方向竖直向上,右侧斜面导轨倾角满足sinθ2=0.8,摩擦因数现将质量为m甲=6kg的导体杆甲从斜面上高h=4m处由静止释放,质量为m乙=2kg的导体杆乙静止在水平导轨上,与水平轨道左端的距离为d。已知导轨间距为l=2m,两杆电阻均为R=1Ω,其余电阻不计,不计导体杆通过水平导轨与斜面导轨连接处的能量损失,且若两杆发生碰撞,则为完全非弹性碰撞,取g=10m/s2,求:(1)甲杆刚进入磁场,乙杆的加速度?(2)乙杆第一次滑上斜面前两杆未相碰,距离d满足的条件?(3)若乙前两次在右侧倾斜导轨上相对于水平导轨的竖直高度y随时间t的变化如图(b)所示(t1、t2、t3、t4、b均为未知量乙第二次进入右侧倾斜导轨之前与甲发生碰撞,甲在0~t3时间内未进入右侧倾斜导轨,求d的取值范围。15.(2024年湖北卷考题)15.如图所示,两足够长平行金属直导轨MN、PQ的间距为L,固定在同一水平面内,直导轨在左端M、P点分别与两条竖直固定、半径为L的圆弧导轨相切。MP连线与直导轨垂直,其左侧无磁场,右侧存在磁感应强度大小为B、方向竖直向下的匀强磁场。长为L、质量为m、电阻为R的金属棒ab跨放在两圆弧导轨的最高点。质量为2m、电阻为6R的均匀金属丝制成一个半径为L的圆环,水平放置在两直导轨上,其圆心到两直导轨的距离相等。忽略导轨的电阻、所有摩擦以及金属环的可能形变,金属棒、金属环均与导轨始终接触良好,重力加速度大小为g。现将金属棒ab由静止释放,求(1)ab刚越过MP时产生的感应电动势大小;(2)金属环刚开始运动时的加速度大小;(3)为使ab在整个运动过程中不与金属环接触,金属环圆心初始位置到MP的最小距离。16.(2024浙江1月卷考题)21.如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于O,O,,轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在O,点,三个相同的关于O,O,,轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知t=0时速度为v0,方向向下,t1、t2时刻的振幅分别为A1,A2。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为Δx时,其弹性势能为kΔx2。不计空气阻力,求(1)平台静止时弹簧的伸长量Δx;(2)t=0时,每个线圈所受到安培力F的大小;(3)在0~t1时间内,每个线圈产生的焦耳热Q;(4)在t1~t2时间内,弹簧弹力冲量I弹的大小。一、单选题12024·江西上饶·模拟预测)如图所示,匀强磁场垂直于水平面向上,折成“L”形的金属棒ACD固定在磁场中的绝缘水平面内,金属棒a(与CD平行)、b(与AC平行)均放在绝缘的水平面上,与ACD围成一个矩形回路,给金属棒a、b施加外力,让a、b两金属棒从图示位置沿图示方向分别以v1、v2的速率匀速平移,已知四根金属杆完全相同且足够长,围成矩形周长保持不变,则在两金属棒匀速运动(a到CD前)的过程中,下列说法正确的是()A.v1=2v2B.回路中感应电流沿顺时针方向C.回路中的电流先变小后变大D.b受到的安培力总是和v2方向相反22024高三下·吉林·专题练习)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大.如图所示,一正方形NFC线圈共3匝,下列说法正确的是A.NFC贴纸在使用时需要另外电源供电才能使用B.穿过线圈的磁场发生变化时,线圈中的感应电动势为三个线圈感应电动势的平均值C.穿过线圈的磁场发生变化时,线圈中的感应电动势为三个线圈感应电动势之和D.垂直穿过线圈的磁场发生变化时,芯片中的电流为三个线圈内电流之和323-24高三下·海南·期中)如图1所示,无线充电技术是近年发展起来的新技术,充电原理可近似看成理想变压器,如图2所示。下列说法正确的是()A.充电基座线圈接的电源是恒定的直流电B.充电基座线圈接的电源必须是交流电且S1,S2都闭合才能充电C.两个线圈中电流的频率可能不同D.两个线圈中电流大小一定相同42024·河北承德·二模)如图所示为某种售货机硬币识别系统简图。虚线框内存在磁场,从入口A进入的硬币沿斜面滚落,通过磁场区域后,由测速器测出速度大小,若速度在某一合适范围,挡板B自动开启,硬币就会沿斜面进入接收装置;否则挡板C开启,硬币进入另一个通道拒绝接收。下列说法不正确A.磁场能使硬币的速度增大得更慢B.如果没有磁场,则测速器示数会更小一些C.硬币进入磁场的过程会受到来自磁场的阻力D.由于磁场的作用,硬币的机械能减小52024·安徽·二模)用材料相同粗细均匀的导线做成如图所示的单匝线圈,线圈构成一个闭合回路。左侧小圆的半径为2d,中间大圆的半径为3d,右侧小圆的半径为d,左侧两圆连接处缺口的长度可忽略不计,右侧两圆错开相交连通(麻花状将线圈固定在与线圈所在平面垂直的磁场中,磁感应强度大小为B=B0+kt,式中的B0和k为常量,则线圈中感应电动势的大小为()A.14πd2kB.12πd2kC.6πd2kD.4πd2k62024·黑龙江大庆·三模)如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、2v速度匀速拉出磁场,则导体框从两个方向分别移出磁场的过程中()A.导体框中产生的感应电流方向相反B.导体框受到的安培力大小之比为1:4C.导体框中产生的焦耳热之比为1:4D.通过导体框截面的电荷量之比为1:1723-24高三下·河南·阶段练习)如图甲所示,固定的矩形铜线框左半部分处于垂直纸面向里的匀强磁场中,当匀强磁场的磁感应强度由B0均匀减小到0后反向增大到—B0,如图乙所示。关于此过程,下列说法正确的是()A.铜线框中的自由电子先顺时针定向移动、后逆时针定向移动B.铜线框中的自由电子始终逆时针定向移动C.铜线框围成的面积始终有扩大的趋势D.铜线框受到的安培力大小不变82017·全国·高考真题)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌,为了有效隔离外界振动对STM扫描头的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示。无扰动时,按下列四种方案对紫铜薄板施加恒定磁场,出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()B.D.92024·江西·二模)高速铁路列车通常使用磁刹车系统,磁刹车工作原理可简述如下:将磁铁的N极靠近一块正在以逆时针方向旋转的圆形铝盘,使磁感线总垂直射入铝盘时,铝盘随即减速,如图所示,圆中磁铁左方铝盘的甲区域朝磁铁方向运动,磁铁右方的乙区域朝离开磁铁方向运动,下列说法中正确的A.铝盘甲区域的感应电流会产生垂直纸面向里的磁场B.磁场与感应电流的作用力,会产生将铝盘减速旋转的阻力C.感应电流在铝盘产生的内能,是将铝盘减速的最主要原因D.若将实心铝盘转换成布满小空洞的铝盘,则磁铁对布满空洞的铝盘减速效果比实心铝盘的效果更好1023-24高二下·天津·阶段练习)如图是学生常用的饭卡内部实物图,其由线圈和芯片组成电路,当饭卡处于感应区域时,刷卡机会激发变化的磁场,从而在饭卡内线圈中产生感应电流来驱动芯片工作,已知线圈面积为S,共n匝,某次刷卡时,线圈平面与磁场垂直,且全部处于磁场区域内,在感应时间t0内,磁感应强度方向向外且由0均匀增大到B0,此过程中()0A.线框中磁通量变化率为n0B.线框中产生周期性变化的顺时针方向的感应电流C.AB边所受安培力方向向左0D.线框中感应电动势大小为0112024·北京海淀·二模)如图1所示为演示自感现象的实验电路。实验时,先闭合开关S,电路达到稳定后,灯泡A和B处于正常发光状态,在t0时刻,将开关S断开,测量得到t0时刻前后灯泡A、B两端电势差Uab、Ucd随时间t的变化关系。电源内阻及电感线圈L的直流电阻可忽略不计。下列说法正确的A.图2所示为灯泡A两端电势差Uab在S断开前后随时间的变化关系B.S断开瞬间,自感线圈L两端电势差大小为U0C.由图1可知电源电动势为2U0D.由图2和3可知两灯泡正常发光时,灯泡A的阻值与灯泡B的阻值之比为1∶2二、多选题122024·广东·三模)为防止意外发生,游乐场等大型设施都配备有电磁阻尼装置,如图所示为某款阻尼缓冲装置的原理示意图:带有光滑轨道的机械主体,能产生垂直缓冲轨道平面的匀强磁场,边缘绕有闭合矩形线圈abcd的高强度缓冲滑块撞到竖直墙时,被瞬间强制制动,机械主体以及磁场由于惯性继续缓冲减速,对缓冲过程,下列说法正确的是()A.线圈bc段受到向右的安培力B.同一匝线圈中b端的电势高于c端的电势C.线圈ab段中电流方向为由b到aD.若磁场反向,则装置起不到缓冲作用132024·贵州·二模)如图,绝缘细线的下端悬挂着一金属材料做成的空心心形挂件,该挂件所在空间水平直线MN下方存在匀强磁场,其磁感应强度B的方向垂直挂件平面,且大小随时间均匀增大。若某段时间内挂件处于静止状态,则该段时间内挂件中产生的感应电流大小i、细线拉力大小F随时间t变化的规律可能是()B.D.1423-24高三下·河南周口·开学考试)如图所示,在置于匀强磁场中的平行导轨上,横跨在两导轨间的导体杆PQ以速度v向右匀速移动,已知磁场的磁感应强度为B,方向垂直于导轨平面(纸面)向外,导轨间距为l,闭合电路acQPa中除电阻R外,其他部分的电阻忽略不计,则()A.电路中的感应电动势E=BlvB.电路中的感应电流C.通过电阻R的电流方向是由a向cD.PQ杆受到的安培力方向水平向右152024·黑龙江·一模)如图甲(俯视图)所示,水平面内固定放置面积为10m2,电阻为1Ω的单匝线圈,线圈内充满垂直水平面向下的匀强磁场,其磁感应强度B1随时间t变化关系如图乙所示,线圈两端点M、N与相距1.5m的粗糙平行金属导轨相连,导轨置于垂直水平面向上的磁感应强度大小B2=2T的匀强磁场中。一根总长为1.5m,质量为2kg,阻值为9Ω的金属杆PQ置于导轨上,且与导轨始终接触良好。一根劲度系数为100N/m的轻弹簧右端连接在固定挡板上,左端与金属杆相连,金属杆与金属导轨间动摩擦因数为μ,金属杆静止时弹簧伸长量为6cm。在t=0时刻闭合开关S,金属杆在0~6s内始终保持静止,g取10m/s2,忽略平行导轨电阻,设最大静摩擦力等于滑动摩擦力,则()A.0~3s内金属杆中电流方向为P→QB.金属杆与金属导轨间动摩擦因数至少为0.45C.0~3s内通过金属杆电荷量为6CD.0~6s内整个回路产生焦耳热60J1623-24高三上·广东·阶段练习)某风速实验装置由如图甲、乙所示的风杯组系统和电磁信号产生系统两部分组成。风杯固定在竖直转轴的顶端,风杯中心到转轴距离为2L,风推动风杯绕竖直转轴顺时针匀速转动。电磁信号产生器由圆形匀强磁场和固定于转轴上的导体棒OA组成,磁场半径为L,磁感应强度大小为B,方向垂直纸面向里,导体棒OA长为1.5L,电阻为r。导体棒每转一周,A端与弹性簧片接触一次,接触时产生的电流强度恒为I。图中电阻为R,其余电阻不计。下列说法正确的是()A.流过电阻R的电流为正弦式交流电B.当导体棒与弹性簧片接触时,OA两点的电压大小为IrC.当导体棒与弹性簧片接触时,O点电势低于A点电势D.风杯的速率172024·福建漳州·二模)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻可忽略不计;导轨间有一垂直于导轨所在平面向上的匀强磁场,其边界ab、cd均与导轨垂直。现将两相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,运动过程中PQ、MN始终与导轨垂直且接触良好。已知PQ进入磁场时加速度恰好为零,从PQ进入磁场时开始计时,MN中电流记为i,MN两端电势差记为u,则下列it、ut图像可能正确的是()B.D.182024·青海·模拟预测)如图所示,平行导轨间距为L,一部分固定放置在绝缘水平面上(足够长另一部分弯曲,ab是两部分的分界线,弯曲部分在ab处的切线水平,ab的右侧存在竖直向下、磁感应强度大小为B的匀强磁场。导体棒2静置于水平导轨上,让导体棒1从弯曲导轨上距水平面高度为L的地方由静止开始下滑,当1运动到ab处时,2刚好要滑动,弯曲导轨光滑,水平导轨与2之间的动摩擦因数为0.5,两导体棒接入回路的总电阻为R,导轨的电阻忽略不计,最大静摩擦力等于滑动摩擦力,重力加速度大小为g,下列说法正确的是() A.1运动到A.1运动到ab处的速度大小为·2gLB.1运动到ab处的速度大小为2·gLC.2的质量为D.2的质量为192024·河北·三模)如图所示,水平面内放置的光滑平行导轨左窄右宽,左轨宽度为d,右轨宽度为2d,匀强磁场与导轨平面垂直,磁感应强度为B。质量为m和2m的甲、乙两金属棒分别垂直放在导轨上,某时刻,分别给甲、乙两金属棒一个大小为v0和2v0的向右的初速度,设回路总电阻不变,导轨足够长,A.甲、乙加速度总是大小相等B.甲、乙匀速运动的速度大小相等C.回路产生的焦耳热为mvD.通过回路某一横截面的电荷量为202024·河南·二模)如图所示,光滑平行等间距且足够长的导轨水平放置在竖直向上的匀强磁场中,磁感应强度大小为3T,导轨宽度L=1m,左端通过导线连接了电源和一个开关K,电源的电动势E=6V,内阻r=1Ω。一质量m=0.1kg的导体棒垂直于导轨放置,其电阻R=2Ω。导体棒的中部通过绝缘轻绳绕过光滑的定滑轮连接了一个质量M=0.5kg的物块,用手托住物块保持静止且轻绳恰好处于伸直状态。释放物块的瞬间闭合开关K,已知重力加速度g=10m/s2,则从刚释放到物块恰好匀速运动经历时间t=0.44s,则关于该过程下列说法正确的是()A.导体棒先向左运动后向右运动B.导体棒最终速度大小为m/sC.流经导体棒的电荷量为0.6CD.电源消耗的能量为4.8J212024高三下·全国·专题练习)如图所示,电阻不计的两光滑平行金属导轨相距0.5m,固定在水平绝缘桌面上,左侧圆弧部分处在竖直平面内,其间接有一电容为0.25F的电容器,右侧平直部分处在磁感应强度为2T。方向竖直向下的匀强磁场中,末端与桌面边缘平齐。电阻为2Ω的金属棒ab垂直于两导轨放置且与导轨接触良好,质量为1kg。棒ab从导轨左端距水平桌面高1.25m处无初速度释放,离开水平直导轨前已匀速运动。已知电容器的储能CU2,其中C为电容器的电容,U为电容器两端的电压,不计空气阻力,重力加速度g=10m/s2。则金属棒ab在沿导轨运动的过程中()A.通过金属棒ab的电荷量为2CB.通过金属棒ab的电荷量为1CC.金属棒ab中产生的焦耳热为2.5JD.金属棒ab中产生的焦耳热为4.5J222024·河南·二模)如图甲,abcd和a′b′c′d′为在同一水平面内的固定光滑平行金属导轨,左右导轨间距分别为2L、L,整个导轨处于竖直向下的匀强磁场中,左侧导轨间的磁感应强度大小为B0,右侧导轨间的磁感应强度大小按图乙规律变化,两根金属杆M、N分别垂直两侧导轨放置,N杆与cc′之间恰好围成一个边长为L的正方形,M杆中点用一绝缘细线通过轻质定滑轮与一重物相连,t=0时释放重物,同时在N杆中点处施加一水平向右的拉力F,两杆在0~t0时间内均处于静止状态,从t0时刻开始,拉力F保 持不变,重物向下运动x距离时(M杆未到达定滑轮处速度达到最大,已知M、N杆和重物的质量都为m,M、N接入电路的电阻都为R,不计导轨电阻,重力加速度为g,下列说法正确的是()A.0~t0时间内,回路中的感应电动势为B.0~t0时间内,施加在N杆上的拉力F随时间t变化的关系为.tC.重物下落的最大速度为D.从t=0时刻到重物达到最大速度的过程中,回路产生的焦耳热为三、解答题2323-24高三下·陕西西安)如图所示,足够长的光滑平行金属导轨MN、PQ固定在水平面上,间距为l,MP间接阻值为R的定值电阻,质量为m的金属棒ab垂直导轨放置,导轨和金属棒电阻不计,整个装置处于方向垂直导轨平面向下、磁感应强度大小为B的匀强磁场中。现给金属棒ab一个水平外力使金属棒从静止开始向右匀加速运动,速度达到v时水平外力大小为该时刻安培力大小的2倍,运动过程中金属棒始终垂直导轨且与导轨接触良好。求:(1)在速度从零增加到v时间内金属棒的加速度大小;(2)在速度从零增加到v时间内流过定值电阻R的电荷量。242024·天津红桥·二模)我国在高铁列车和电动汽车的设计和制造领域现在处于世界领先水平,为了节约利用能源,在“刹车”时采用了电磁式动力回收装置,可将部分动能转化为电能并储存起来。如图所示为该装置的简化模型,在光滑的水平面内,一个“日”字形的金属线框,各边长l=0.5m,其中CD、JK、MN边电阻均为Ω,CM、DN电阻可忽略,线框以v0=9m/s速度冲进宽度也为l,磁感应强度B=0.4T的匀强磁场,最终整个线框恰好能穿出磁场,忽略空气阻力的影响,求:(1)线框刚进磁场时流过MN的电流大小和方向,并指出M、N哪端电势高;(2)整个线框的质量m;(3)MN边穿过磁场过程中,MN边中产生的焦耳热Q。2523-24高二下·天津·期中)如图所示,光滑的平行金属导轨EF、GH与水平面间的夹角为37°,导轨间距L=1m,导轨平面的CDPQ矩形区域内存在垂直导轨平面向上、磁感应强度大小B1=0.5T的匀强磁场。固定于水平面内的金属圆环圆心为O,半径r=1m,圆环平面内存在竖直向上、磁感应强度大小为B2=1T的匀强磁场。不计质量的金属棒OA可绕过O点的转轴旋转,另一端A与圆环接触良好。导轨E、G两端用导线分别与圆心O和圆环边缘相连。现将一质量为m=0.2kg、长L=1m的金属棒MN从磁场上边界CD上方某处由静止释放,一段时间后MN以速度v1=1m/s进入磁场,同时用外力控制OA棒的转动,从而使MN棒在磁场中做匀加速直线运动,1s后以v2=2m/s的速度离开磁场,此过程中MN棒始终与导轨接触若以MN棒进入磁场瞬间为t=0时刻,求MN棒从CD运动到PQ的运动过程中:(1)MN棒受到的安培力大小FA;(2)金属棒OA转动的方向(俯视)及OA的角速度ω与时间t的关系式;(3)外力对金属棒OA所做的功WF。262024·贵州·模拟预测)如图,平行金属导轨MM′、NN′和平行金属导轨PQR、P′Q′R′固定在水平台面上,平行金属导轨间距均为L=1m,M′N′与PP′高度差为h1=0.6m。导轨MM′、NN′左端接有R=3.0Ω的电阻,导轨平直部分存在宽度为d、磁感应强度B1=2T,方向竖直向上的匀强磁场;导轨PQR与P′Q′R′平行,其中PQ与P′Q′是圆心角为60°、半径为r=0.9m的圆弧形导轨,QR与Q′R′是水平长直导轨。QQ′右侧存在磁感应强度B2=4T,方向竖直向上的匀强磁场,导体棒a的质量m1=0.2kg,接在电路中;导体棒b的质量m2=0.3kg,接在电路中的电阻R2=6.0Ω。导体棒a从距离导轨MM′、NN′平直部分h=1.25m处由静止释放,恰能无碰撞地从PP′滑入右侧平行导轨,且始终没有与棒b相碰。重力加速度g取10m/s2,不计导轨电阻、一切摩擦及空气阻力。求:(1)导体棒a刚进入磁场B1时的速度大小以及此时电阻R的电流大小和方向;(2)导体棒b的最大加速度;(3)导体棒a、b在平行金属导轨PQR、P′Q′R′中产生的总焦耳热(导轨足够长)。1.(2024年湖北卷考题)1.《梦溪笔谈》中记录了一次罕见的雷击事件:房屋被雷击后,屋内的银饰、宝刀等金属熔化了,但是漆器、刀鞘等非金属却完好(原文为:有一木格,其中杂贮诸器,其漆器银扣者,银悉熔流在地,漆器曾不焦灼。有一宝刀,极坚钢,就刀室中熔为汁,而室亦俨然)。导致金属熔化而非金属完好的原因可能为()A.摩擦B.声波C.涡流D.光照【答案】C【解析】在雷击事件中金属和非金属都经历了摩擦,声波和光照的影响,而金属能够因电磁感应产生涡流非金属不能,因此可能原因为涡流。故选C。2.(2024年江苏卷考题)9.如图所示,在绝缘的水平面上,有闭合的两个线圈a、b,线圈a处在匀强磁场中,现将线圈a从磁场中匀速拉出,线圈a、b中产生的感应电流方向分别是()A.顺时针,顺时针B.顺时针,逆时针C.逆时针,顺时针D.逆时针,逆时针【答案】A【解析】线圈a从磁场中匀速拉出的过程中穿过a线圈的磁通量在减小,则根据楞次定律可知a线圈的电流为顺时针,由于线圈a从磁场中匀速拉出则a中产生的电流为恒定电流,则线圈a靠近线圈b的过程中线圈b的磁通量在向外增大,同理可得线圈b产生的磁场为顺时针。故选A。3.(2024年湖南卷考题)4.如图,有一硬质导线Oabc,其中是半径为R的半圆弧,b为圆弧的中点,直线段Oa长为R且垂直于直径ac。该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。则O、a、b、c各点电势关系为()>φb>φc<φc>φb=φc=φc【答案】C【解析】如图,相当于Oa、Ob、Oc导体棒转动切割磁感线,根据右手定则可知O点电势最高;根据可得0<UOa<UOb=UOc得φO>φa>φb=φc故选C。4.(2024年广东卷考题)4.电磁俘能器可在汽车发动机振动时利用电磁感应发电实现能量回收,结构如图甲所示。两对永磁铁可随发动机一起上下振动,每对永磁铁间有水平方向的匀强磁场,磁感应强度大小均为B.磁场中,边长为L的正方形线圈竖直固定在减震装置上。某时刻磁场分布与线圈位置如图乙所示,永磁铁振动时磁场分界线不会离开线圈。关于图乙中的线圈。下列说法正确的是()A.穿过线圈的磁通量为BL2B永磁铁相对线圈上升越高,线圈中感应电动势越大.C.永磁铁相对线圈上升越快,线圈中感应电动势越小D.永磁铁相对线圈下降时,线圈中感应电流的方向为顺时针方向【答案】D【解析】A.根据图乙可知此时穿过线圈的磁通量为0,故A错误;BC.根据法拉第电磁感应定律可知永磁铁相对线圈上升越快,磁通量变化越快,线圈中感应电动势越大,故BC错误;D.永磁铁相对线圈下降时,根据安培定则可知线圈中感应电流的方向为顺时针方向,故D正确。故选D。5..(2024全国甲卷考题)8.如图,一绝缘细绳跨过两个在同一竖直面(纸面)内的光滑定滑轮,绳的一端连接一矩形金属线框,另一端连接一物块。线框与左侧滑轮之间的虚线区域内有方向垂直纸面的匀强磁场,磁场上下边界水平,在t=0时刻线框的上边框以不同的初速度从磁场下方进入磁场。运动过程中,线框始终在纸面内且上下边框保持水平。以向上为速度的正方向,下列线框的速度v随时间t变化的图像中可能正确的是()C.B.D.A.C.B.D.【答案】AC【解析】设线圈的上边进入磁场时的速度为v,设线圈的质量M,物块的质量m,图中线圈进入磁场时线圈的加速度向下,则对线圈由牛顿第二定律可知Mg+F安-T=Ma对滑块T-mg=ma其中F安=线圈向上做减速运动,随速度的减小,向下的加速度减小;当加速度为零时,即线圈匀速运动的速度为A.若线圈进入磁场时的速度较小,则线圈进入磁场时做加速度减小的减速运动,线圈的速度和加速度都趋近于零,则图像A可能正确;B.因t=0时刻线圈就进入磁场,则进入磁场时线圈向上不可能做匀减速运动,则图像B不可能;CD.若线圈的质量等于物块的质量,且当线圈进入磁场时,且速度大于v0,线圈进入磁场做加速度减小的减速运动,完全进入磁场后线圈做匀速运动;当线圈出离磁场时,受向下的安培力又做加速度减小的减速运动,最终出离磁场时做匀速运动,则图像C有可能,D不可能。故选AC。6.(2024年辽宁卷考题)9.如图,两条“∧”形的光滑平行金属导轨固定在绝缘水平面上,间距为L,左、右两导轨面与水平面夹角均为30°,均处于竖直向上的匀强磁场中,磁感应强度大小分别为2B和B。将有一定阻值的导体棒ab、cd放置在导轨上,同时由静止释放,两棒在下滑过程中始终与导轨垂直并接触良好,ab、cd的质量分别为2m和m,长度均为L。导轨足够长且电阻不计,重力加速度为g,两棒在下滑 A.回路中的电流方向为abcdaB.ab中电流趋于C.ab与cd加速度大小之比始终为2︰1D.两棒产生的电动势始终相等【答案】AB【解析】A.两导体棒沿轨道向下滑动,根据右手定则可知回路中的电流方向为abcda;故A正确;BC.设回路中的总电阻为R,对于任意时刻当电路中的电流为I时,对ab根据牛顿第二定律得分析可知两个导体棒产生的电动势相互叠加,随着导体棒速度的增大,回路中的电流增大,导体棒受到的安培力在增大,故可知当安培力沿导轨方向的分力与重力沿导轨向下的分力平衡时导体棒将匀速运动,此时电路中的电流达到稳定值,此时对ab分析可得解得,故B正确,C错误;D.根据前面分析可知aab=acd,故可知两导体棒速度大小始终相等,由于两边磁感应强度不同,故产生的感应电动势不等,故D错误。故选AB。7.(2024年山东卷考题)8.如图甲所示,在-d≤x≤d,-d≤y≤d的区域中存在垂直Oxy平面向里、磁感应强度大小为B的匀强磁场(用阴影表示磁场的区域边长为2d的正方形线圈与磁场边界重合。线圈以y轴为转轴匀速转动时,线圈中产生的交变电动势如图乙所示。若仅磁场的区域发生了变化,线圈中产生的电动势变为图丙所示实线部分,则变化后磁场的区域可能为()A.B.C.D.【答案】C【解析】根据题意可知,磁场区域变化前线圈产生的感应电动势为e=Esin①t由题图丙可知,磁场区域变化后,当Esin①t=线圈的侧边开始切割磁感线,即当线圈旋转时开始切割磁感线,由几何关系可知磁场区域平行于x轴的边长变为d,=2dcos=d,C正确。故选C。8.(2024年湖南卷考题)8.某电磁缓冲装置如图所示,两足够长的平行金属导轨置于同一水平面内,导轨左端与一阻值为R的定值电阻相连,导轨BC段与B1C1段粗糙,其余部分光滑,AA1右侧处于竖直向下的匀强磁场中,一质量为m的金属杆垂直导轨放置。现让金属杆以初速度v0沿导轨向右经过AA1进入磁场,最终恰好停在CC1处。已知金属杆接入导轨之间的阻值为R,与粗糙导轨间的摩擦因数为μ,AB=BC=d。导轨电阻不计,重力加速度为g,下列说法正确的是()A.金属杆经过BB1的速度为B.在整个过程中,定值电阻R产生的热量为一μmgdC.金属杆经过AA1B1B与BB1C1C区域,金属杆所受安培力的冲量相同D.若将金属杆的初速度加倍,则金属杆在磁场中运动的距离大于原来的2倍【答案】CD【解析】A.设平行金属导轨间距为L,金属杆在AA1B1B区域向右运动的过程中切割磁感线有金属杆在AA1B1B区域运动的过程中根据动量定理有一BILΔt=mΔv0设金属杆在BB1C1C区域运动的时间为t0,同理可得,则金属杆在BB1C1C区域运动的过程中有解得综上有则金属杆经过BB1的速度大于,故A错误;B.在整个过程中,根据能量守恒有=μmgd+Q则在整个过程中,定值电阻R产生的热量为一μmgd,故B错误;C.金属杆经过AA1B1B与BB1C1C区域,金属杆所受安培力的冲量为则金属杆经过AA1B1B与BB1C1C区域滑行距离均为d,金属杆所受安培力的冲量相同,故C正确;D.根据A选项可得,金属杆以初速度v0再磁场中运动有金属杆的初速度加倍,则金属杆通过AA1B1B区域时中有则金属杆的初速度加倍,则金属杆通过BB1时速度为则设金属杆通过BB1C1C区域的时间为t1,则则则可见若将金属杆的初速度加倍,则金属杆在磁场中运动的距离大于原来的2倍,故D正确。故选CD。9.(2024浙江1月卷考题)13.若通以电流I的圆形线圈在线圈内产生的磁场近似为方向垂直线圈平面的匀强磁场,其大小B=kI(k的数量级为10一4T/A)。现有横截面半径为1mm的导线构成半径为1cm的圆形线圈处于超导状态,其电阻率上限为10一26Ω.m。开始时线圈通有100A的电流,则线圈的感应电动势大小的数量级和一年后电流减小量的数量级分别为()【答案】D【解析】线圈中电流I(t)的减小将在线圈内导致自感电动势,故ε=一L其中L代表线圈的自感系数,有在计算通过线圈的磁通量Φ时,以导线附近即r1处的B为最大,而该处B又可把线圈当成无限长载流导线所产生的,根据题意B=kI根据电阻定律有联立解得≈2×10-5A,ε=2×10-20则线圈的感应电动势大小的数量级和一年后电流减小量的数量级分别为10-20V,10-5A。故选D。10.(2024年山东卷考题)11.如图所示,两条相同的半圆弧形光滑金属导轨固定在水平桌面上,其所在平面竖直且平行,导轨最高点到水平桌面的距离等于半径,最低点的连线OO'与导轨所在竖直面垂直。空间充满竖直向下的匀强磁场(图中未画出导轨左端由导线连接。现将具有一定质量和电阻的金属棒MN平行OO'放置在导轨图示位置,由静止释放。MN运动过程中始终平行于OO'且与两导轨接触良好,不考虑自感影响,下列说法正确的是()A.MN最终一定静止于OO'位置B.MN运动过程中安培力始终做负功C.从释放到第一次到达OO'位置过程中,MN的速率一直在增大D.从释放到第一次到达OO'位置过程中,MN中电流方向由M到N【答案】ABD【解析】A.由于金属棒MN运动过程切割磁感线产生感应电动势,回路有感应电流,产生焦耳热,金属棒MN的机械能不断减小,由于金属导轨光滑,所以经过多次往返运动,MN最终一定静止于OO'位置,故A正确;B.当金属棒MN向右运动,根据右手定则可知,MN中电流方向由M到N,根据左手定则,可知金属棒MN受到的安培力水平向左,则安培力做负功;当金属棒MN向左运动,根据右手定则可知,MN中电流方向由N到M,根据左手定则,可知金属棒MN受到的安培力水平向右,则安培力做负功;可知MN运动过程中安培力始终做负功,故B正确;C.金属棒MN从释放到第一次到达OO'位置过程中,由于在OO'位置重力沿切线方向的分力为0,可知在到达OO'位置之前的位置,重力沿切线方向的分力已经小于安培力沿切线方向的分力,金属棒MN已经做减速运动,故C错误;D.从释放到第一次到达OO'位置过程中,根据右手定则可知,MN中电流方向由M到N,故D正确。故选ABD。11.(2024全国甲卷考题)12.如图,金属导轨平行且水平放置,导轨间距为L,导轨光滑无摩擦。定值电阻大小为R,其余电阻忽略不计,电容大小为C。在运动过程中,金属棒始终与导轨保持垂直。整个装置处于竖直方向且磁感应强度为B的匀强磁场中。(1)开关S闭合时,对金属棒施加以水平向右的恒力,金属棒能达到的最大速度为v0。当外力功率为定值电阻功率的两倍时,求金属棒速度v的大小。(2)当金属棒速度为v时,断开开关S,改变水平外力并使金属棒匀速运动。当外力功率为定值电阻功率的两倍时,求电容器两端的电压以及从开关断开到此刻外力所做的功。(2【解析】(1)开关S闭合后,当外力与安培力相等时,金属棒的速度最大,则F=F安=BIL由闭合电路欧姆定律金属棒切割磁感线产生的感应电动势为E=BLv0联立可得,恒定的外力为在加速阶段,外力的功率为定值电阻的功率为若PF=2PR时,即化简可得金属棒速度v的大小为(2)断开开关S,电容器充电,则电容器与定值电阻串联,则有E=BLv=IR+当金属棒匀速运动时,电容器不断充电,电荷量q不断增大,电路中电流不断减小,则金属棒所受安培力F安=BIL不断减小,而拉力的功率PF=F'v=BILv定值电阻功率PR=I2R当PF=2PR时有BILv=2I2R可得根据E=BLv=IR+可得此时电容器两端电压为BLv0从开关断开到此刻外力所做的功为W=ΣBIL(v.Δt)=BLvΣI.Δt=BLvq其中联立可得12.(2024年河北卷考题)15.如图,边长为2L的正方形金属细框固定放置在绝缘水平面上,细框中心O处固定一竖直细导体轴OO。间距为L、与水平面成θ角的平行导轨通过导线分别与细框及导体轴相连。导轨和细框分别处在与各自所在平面垂直的匀强磁场中,磁感应强度大小均为B。足够长的细导体棒OA在水平面内绕O点以角速度①匀速转动,水平放置在导轨上的导体棒CD始终静止。OA棒在转动过程中,CD棒在所受安培力达到最大和最小时均恰好能静止。已知CD棒在导轨间的电阻值为R,电路中其余部分的电阻均不计,CD棒始终与导轨垂直,各部分始终接触良好,不计空气阻力,重力加速度大小为g。(1)求CD棒所受安培力的最大值和最小值。(2)锁定OA棒,推动CD棒下滑,撤去推力瞬间,CD棒的加速度大小为a,所受安培力大小等于(1)问中安培力的最大值,求CD棒与导轨间的动摩擦因数。F=,Fmin=(2)tanθ【解析】(1)当OA运动到正方形细框对角线瞬间,切割的有效长度最大,Lmax=此时感应电流最大,CD棒所受的安培力最大,根据法拉第电磁感应定律得根据闭合电路欧姆定律得Imax=故CD棒所受的安培力最大为Fmax=BImaxL=当OA运动到与细框一边平行时瞬间,切割的有效长度最短,感应电流最小,CD棒受到的安培力最小,故CD棒所受的安培力最小为Fmin=BIminL=(2)当CD棒受到的安培力最小时根据平衡条件得mgsinθ-μmgcosθ-Fmin=0当CD棒受到的安培力最大时根据平衡条件得Fmax-mgsinθ-μmgcosθ=0联立解得撤去推力瞬间,根据牛顿第二定律得Fmax+μmgcosθ-mgsinθ=ma解得tanθ13.(2024年安徽卷考题)15.如图所示,一“U”型金属导轨固定在竖直平面内,一电阻不计,质量为m的金属棒ab垂直于导轨,并静置于绝缘固定支架上。边长为L的正方形cdef区域内,存在垂直于纸面向外的匀强磁场。支架上方的导轨间,存在竖直向下的匀强磁场。两磁场的磁感应强度大小B随时间的变化关系均为B=kt(SIk为常数(k>0)。支架上方的导轨足够长,两边导轨单位长度的电阻均为r,下方导轨的总电阻为R。t=0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,整个运动过程中ab与两边导轨接触良好。已知ab与导轨间动摩擦因数为μ,重力加速度大小为g。不计空气阻力,两磁场互不影响。(1)求通过面积Scdef的磁通量大小随时间t变化的关系式,以及感应电动势的大小,并写出ab中电流的方向;(2)求ab所受安培力的大小随时间t变化的关系式;(3)求经过多长时间,对ab所施加的拉力达到最大值,并求此最大值。,从a流向(3)【解析】(1)通过面积Scdef的磁通量大小随时间t变化的关系式为根据法拉第电磁感应定律得=kL2由楞次定律可知ab中的电流从a流向b。(2)根据左手定则可知ab受到的安培力方向垂直导轨面向里,大小为F安=BIL其中B=kt设金属棒向上运动的位移为x,则根据运动学公式所以导轨上方的电阻为R=2xr由闭合电路欧姆定律得联立得ab所受安培力的大小随时间t变化的关系式为(3)由题知t=0时,对ab施加竖直向上的拉力,恰使其向上做加速度大小为a的匀加速直线运动,则对ab受力分析由牛顿第二定律其中联立可得整理有F-mg-μF安=ma根据均值不等式可知,当=art时,F有最大值,故解得F的最大值为足够长的光滑水平导轨处于磁感应强度为B=0.5T的匀强磁场中,磁场方向竖直向上,右侧斜面导轨倾角满足sinθ2=0.8,摩擦因数现将质量为m甲=6kg的导体杆甲从斜面上高h=4m处由静止释放,质量为m乙=2kg的导体杆乙静止在水平导轨上,与水平轨道左端的距离为d。已知导轨间距为l=2m,两杆电阻均为R=1Ω,其余电阻不计,不计导体杆通过水平导轨与斜面导轨连接处的能量损失,且若两杆发生碰撞,则为完全非弹性碰撞,取g=10m/s2,求:(1)甲杆刚进入磁场,乙杆的加速度?(2)乙杆第一次滑上斜面前两杆未相碰,距离d满足的条件?(3)若乙前两次在右侧倾斜导轨上相对于水平导轨的竖直高度y随时间t的变化如图(b)所示(t1、t2、t3、t4、b均为未知量乙第二次进入右侧倾斜导轨之前与甲发生碰撞,甲在0~t3时间内未进入右侧倾斜导轨,求d的取值范围。【答案】(1)a乙0=2m/s2,方向水平向右d≥24m;m<d<【解析】(1)甲从静止运动至水平导轨时,根据动能定理有甲刚进人磁场时,平动切割磁感线有E0=Blv0则根据欧姆定律可知此时回路的感应电流为根据楞次定律可知,回路中的感应电流沿逆时针方向(俯视结合左手定则可知,乙所受安培力方向水平向右,由牛顿第二定律有BI0l=m2a乙0带入数据有a乙0=2m/s2,方向水平向右(2)甲和乙在磁场中运动的过程中,系统不受外力作用,则系统动量守恒,若两者共速时恰不相碰,则有对乙根据动量定理有其中联立解得则d满足m1v0=(m1+m2)v共BIlt=m2v共dmin=Δx=24md≥24m(3)根据(2)问可知,从甲刚进入磁场至甲、乙第一次在水平导轨运动稳定,相对位移为Δx=24m,且稳定时的速度v共=6m/s乙第一次在右侧斜轨上向上运动的过程中,根据牛顿第二定律有m2gsinθ2+μ2m2gcosθ2=m2a乙上根据匀变速直线运动位移与速度的关系有2a乙上x上=v共2乙第一次在右侧斜轨上向下运动的过程中,根据牛顿第二定律有m2gsinθ2-μ2m2gcosθ2=m2a乙下再根据匀变速直线运动位移与速度的关系有2a乙下x下=v12且x上=x下联立解得乙第一次滑下右侧轨道最低点的速度v1=5m/s由于两棒发生碰撞,则为完全非弹性碰撞,则甲乙整体第一次在右侧倾斜轨道上向上运动有(m1+m2)gsinθ2+μ2(m1+m2)gcosθ2=(m1+同理有2a共上x共上=v2且由图(b)可知x上=4.84x共上解得甲、乙碰撞后的速度乙第一次滑下右侧轨道最低点后与甲相互作用的过程中,甲、乙组成的系统合外力为零,根据动量守恒有m1v2-m2v1=(m1+m2))v解得乙第一次滑下右侧轨道最低点时甲的速度为若乙第一次滑下右侧轨道最低点时与甲发生碰撞,则对应d的最小值,乙第一次在右侧斜轨上运动的过程,对甲根据动量定理有其中解得根据位移关系有解得-BI1lΔt1=m1v2-m1v共dmin′-Δx=Δx1若乙返回水平导轨后,当两者共速时恰好碰撞,则对应d的最大值,对乙从返回水平导轨到与甲碰撞前瞬间的过程,根据动量定理有lΔt2=m2v+m2v1其中解得Δx2=根据位移关系有dmax-Δx-Δx1=Δx2解得dmax=则d的取值范围为m<d<15.(2024年湖北卷考题)15.如图所示,两足够长平行金属直导轨MN、PQ的间距为L,固定在同一水平面内,直导轨在左端M、P点分别与两条竖直固定、半径为L的圆弧导轨相切。MP连线与直导轨垂直,其左侧无磁场,右侧存在磁感应强度大小为B、方向竖直向下的匀强磁场。长为L、质量为m、电阻为R的金属棒ab跨放在两圆弧导轨的最高点。质量为2m、电阻为6R的均匀金属丝制成一个半径为L的圆环,水平放置在两直导轨上,其圆心到两直导轨的距离相等。忽略导轨的电阻、所有摩擦以及金属环的可能形变,金属棒、金属环均与导轨始终接触良好,重力加速度大小为g。现将金属棒ab由静止释放,求(1)ab刚越过MP时产生的感应电动势大小;(2)金属环刚开始运动时的加速度大小;(3)为使ab在整个运动过程中不与金属环接触,金属环圆心初始位置到MP的最小距离。【解析】(1)根据题意可知,对金属棒ab由静止释放到刚越过MP过程中,由动能定理有解得则ab刚越过MP时产生的感应电动势大小为E=BLv0=BL(2)根据题意可知,金属环在导轨间两段圆弧并联接入电路中,轨道外侧的两端圆弧金属环被短路,由几何关系可得,每段圆弧的电阻为可知,整个回路的总电阻为R总=R+总ab刚越过MP时,通过ab的感应电流为总对金属环由牛顿第二定律有2BL.=2ma解得(3)根据题意,结合上述分析可知,金属环和金属棒ab所受的安培力等大反向,则系统的动量守恒,由于金属环做加速运动,金属棒做减速运动,为使ab在整个运动过程中不与金属环接触,则有当金属棒ab和金属环速度相等时,金属棒ab恰好追上金属环,设此时速度为v,由动量守恒定律有mv0=mv+2mv解得对金属棒ab,由动量定理有则有设金属棒运动距离为x1,金属环运动的距离为x2,则有总总联立解得Δx=x1-x2=则金属环圆心初始位置到MP的最小距离d=L+Δx=16.(2024浙江1月卷考题)21.如图1所示,扫描隧道显微镜减振装置由绝缘减振平台和磁阻尼减振器组成。平台通过三根关于OO轴对称分布的相同轻杆悬挂在轻质弹簧的下端O,弹簧上端固定悬挂在O点,三个相同的关于OO轴对称放置的减振器位于平台下方。如图2所示,每个减振器由通过绝缘轻杆固定在平台下表面的线圈和固定在桌面上能产生辐向磁场的铁磁体组成,辐向磁场分布关于线圈中心竖直轴对称,线圈所在处磁感应强度大小均为B。处于静止状态的平台受到外界微小扰动,线圈在磁场中做竖直方向的阻尼运动,其位移随时间变化的图像如图3所示。已知t=0时速度为v0,方向向下,t1、t2时刻的振幅分别为A1,A2。平台和三个线圈的总质量为m,弹簧的劲度系数为k,每个线圈半径为r、电阻为R。当弹簧形变量为Δx时,其弹性势能为kΔx2。不计空气阻力,求(1)平台静止时弹簧的伸长量Δx;(2)t=0时,每个线圈所受到安培力F的大小;(3)在0~t1时间内,每个线圈产生的焦耳热Q;(4)在t1~t2时间内,弹簧弹力冲量I弹的大小。【解析】(1)平台静止时,穿过三个线圈的的磁通量不变,线圈中不产生感应电流,线圈不受到安培力作用,O点受力平衡,因此由胡克定律可知此时弹簧的伸长量(2)在t=0时速度为v0,设每个线圈的周长为L,由电磁感应定律可得线圈中产生的感应电流每个线圈所受到安培力F的大小F=BIL=(3)由减震器的作用平台上下不移动,由能量守恒定律可得平台在0~t1时间内,振动时能量的减少量为Q,由能量守恒定律Q+mgA1=在0~t1时间内,振动时能量的减少转化为线圈的焦耳热,可知每个线圈产生的焦耳热(4)取向上为正方向,全程由动量定理可得I弹+IA-IG=0联立解得弹簧弹力冲量I弹的大小为I弹=mg一、单选题12024·江西上饶·模拟预测)如图所示,匀强磁场垂直于水平面向上,折成“L”形的金属棒ACD固定在磁场中的绝缘水平面内,金属棒a(与CD平行)、b(与AC平行)均放在绝缘的水平面上,与ACD围成一个矩形回路,给金属棒a、b施加外力,让a、b两金属棒从图示位置沿图示方向分别以v1、v2的速率匀速平移,已知四根金属杆完全相同且足够长,围成矩形周长保持不变,则在两金属棒匀速运动(a到CD前)的过程中,下列说法正确的是()A.v1=2v2B.回路中感应电流沿顺时针方向C.回路中的电流先变小后变大D.b受到的安培力总是和v2方向相反【答案】C【解析】A.要保证围成矩形周长保持不变,根据几何关系可知,一定有v1=v2,A错误;B.回路的面积先变大后变小,根据楞次定律可知,回路中感应电流先沿顺时针方向后沿逆时针方向,B错误;C.当所围面积为正方形时,回路中感应电流为零,因此回路中的电流先变小后变大,C正确;D.当回路中电流沿逆时针方向时,b受到的安培力和v2方向相同,D错误;故选C。22024高三下·吉林·专题练习)近场通信(NFC)器件应用电磁感应原理进行通讯,其天线类似一个压平的线圈,线圈尺寸从内到外逐渐变大.如图所示,一正方形NFC线圈共3匝,下列说法正确的是A.NFC贴纸在使用时需要另外电源供电才能使用B.穿过线圈的磁场发生变化时,线圈中的感应电动势为三个线圈感应电动势的平均值C.穿过线圈的磁场发生变化时,线圈中的感应电动势为三个线圈感应电动势之和D.垂直穿过线圈的磁场发生变化时,芯片中的电流为三个线圈内电流之和【答案】C【解析】A.贴纸在使用时不需要另外电源供电,外部磁场变化产生的感应电流足以为芯片使用供电,故A错误;BC.穿过线圈的磁场发生变化时,三个线圈是串联关系,故线圈中的感应电动势为三个线圈感应电动势之和,故B错误,C正确;D.三个线圈是串联关系,通过芯片和线圈的电流大小相等,故D错误。故选C。323-24高三下·海南·期中)如图1所示,无线充电技术是近年发展起来的新技术,充电原理可近似看成理想变压器,如图2所示。下列说法正确的是()A.充电基座线圈接的电源是恒定的直流电B.充电基座线圈接的电源必须是交流电且S1,S2都闭合才能充电C.两个线圈中电流的频率可能不同D.两个线圈中电流大小一定相同【答案】B【解析】AB.根据法拉第电磁感应定律,充电基座线圈接的电源必须是交流电且S1、S2,都闭合后构成闭合回路才能充电,故A错误,B正确;CD.由于充电原理可近似看成理想变压器,两个线圈中电流的频率一定相同,电压和电流强度不一定相同,故CD错误。故选B。42024·河北承德·二模)如图所示为某种售货机硬币识别系统简图。虚线框内存在磁场,从入口A进入的硬币沿斜面滚落,通过磁场区域后,由测速器测出速度大小,若速度在某一合适范围,挡板B自动开启,硬币就会沿斜面进入接收装置;否则挡板C开启,硬币进入另一个通道拒绝接收。下列说法不正确A.磁场能使硬币的速度增大得更慢B.如果没有磁场,则测速器示数会更小一些C.硬币进入磁场的过程会受到来自磁场的阻力D.由于磁场的作用,硬币的机械能减小【答案】B【解析】ABC.根据题意可知,硬币进入磁场和离开磁场时,穿过硬币的磁通量发生变化,硬币中产生感应电流,感应电流会阻碍硬币的相对运动,即硬币进入磁场的过程会受到来自磁场的阻力,若磁场阻力大于硬币重力沿斜面的分力,硬币将做减速运动,若磁场阻力等于硬币重力沿斜面的分力,硬币将匀速进入磁场,若磁场阻力小于硬币重力沿斜面的分力,硬币继续加速运动,但速度增加变慢,综上所述,磁场能使硬币的速度增大得更慢,如果没有磁场,则测速器示数会更大一些,故AC正确,不满足题意要求,B错误,满足题意要求;D.根据题意可知,硬币进入磁场和离开磁场时,穿过硬币的磁通量发生变化,硬币中产生感应电流,感应电流会阻碍硬币的相对运动,对硬币做负功,使硬币的机械能减小,故D正确,不满足题意要求。故选B。52024·安徽·二模)用材料相同粗细均匀的导线做成如图所示的单匝线圈,线圈构成一个闭合回路。左侧小圆的半径为2d,中间大圆的半径为3d,右侧小圆的半径为d,左侧两圆连接处缺口的长度可忽略不计,右侧两圆错开相交连通(麻花状将线圈固定在与线圈所在平面垂直的磁场中,磁感应强度大小为B=B0+kt,式中的B0和k为常量,则线圈中感应电动势的大小为()A.14πd2kB.12πd2kC.6πd2kD.4πd2k【答案】B【解析】根据楞次定律可知,左侧小圆和中间大圆产生的感应电流方向相同,而右侧小圆产生的感应电流方向与左侧小圆和中间大圆的相反,根据法拉第电磁感应定律可得线圈中感应电动势的大小为E=E左+E中-E右=kπ(2d)2+kπ(3d)2-kπd2=12πd2k故选B。62024·黑龙江大庆·三模)如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、2v速度匀速拉出磁场,则导体框从两个方向分别移出磁场的过程中()A.导体框中产生的感应电流方向相反B.导体框受到的安培力大小之比为1:4C.导体框中产生的焦耳热之比为1:4D.通过导体框截面的电荷量之比为1:1【答案】D【解析】A.将导体框从两个方向移出磁场的过程中,磁通量均减小,而磁场方向都垂直纸面向外,根据楞次定律判断可知,导体框中产生的感应电流方向均沿逆时针方向,故A错误;BCD.导体框以速度v匀速拉出磁场时,导体框中产生的感应电流大小为受到的安培力大小为=BI1L=产生的焦耳热为Q1=I12Rt1=通过导体框截面的电荷量为q1=I1t1=导体框以速度2v匀速拉出磁场时,导体框中产生的感应电流大小为受到的安培力大小为=BI2L=产生的焦耳热为Q2=IRt2=通过导体框截面的电荷量为q2=I2t2=2故选D。723-24高三下·河南·阶段练习)如图甲所示,固定的矩形铜线框左半部分处于垂直纸面向里的匀强磁场中,当匀强磁场的磁感应强度由B0均匀减小到0后反向增大到-B0,如图乙所示。关于此过程,下列说法正确的是()A.铜线框中的自由电子先顺时针定向移动、后逆时针定向移动B.铜线框中的自由电子始终逆时针定向移动C.铜线框围成的面积始终有扩大的趋势D.铜线框受到的安培力大小不变【答案】B【解析】AB.根据楞次定律,按照图乙中变化的磁场产生顺时针方向的电场,铜线框中的自由电子在电场力的作用下逆时针定向移动,故A错误,B正确;C.根据楞次定律中“增缩减扩”的规律,穿过铜线框的磁通量先减小后增大,铜线框围成的面积先有扩大的趋势、后有缩小的趋势,故C错误;D.设图乙中图线的斜率为k,根据E==kS,斜率不变,可知线圈中的感应电动势大小不变,则通过铜线框的电流不变。又因为线框受力的有效长度不变,而磁感应强度先减小后增大,根据F安=BIL可知铜线框受到的安培力先减小后增大,故D错误。故选B。82017·全国·高考真题)扫描隧道显微镜(STM)可用来探测

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论