版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.2.式子在实数范围内有意义,则的取值范围是()A. B. C. D.3.如图,长方形被分割成个正方形和个长方形后仍是中心对称图形,设长方形的周长为,若图中个正方形和个长方形的周长之和为,则标号为①正方形的边长为()A. B. C. D.4.如图,若,则的度数是()A. B. C. D.5.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成6.已知△ABC的周长是24,且AB=AC,又AD⊥BC,D为垂足,若△ABD的周长是20,则AD的长为()A.6 B.8 C.10 D.127.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.8.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°9.如图,在中,平分,平分,且交于,若,则的值为A.36 B.9 C.6 D.1810.下列运算正确的是()A.=±4 B.(ab2)3=a3b6C.a6÷a2=a3 D.(a﹣b)2=a2﹣b211.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.cm B.1cm C.2cm D.cm12.如果分式的值为0,则的值为()A. B. C. D.不存在二、填空题(每题4分,共24分)13.等腰三角形的两边长分别为2和7,则它的周长是_____.14.分解因式:2a3﹣8a=________.15.如图,点在内,因为,,垂足分别是、,,所以平分,理由是______.16.若,则=_____.17.当,时,则的值是________________.18.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.三、解答题(共78分)19.(8分)若,求的值.20.(8分)先化简,再求值:1-÷,其中x=-2.21.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.22.(10分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.23.(10分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)24.(10分)(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).25.(12分)如图,点A、F、C、D在同一条直线上,已知AC=DF,∠A=∠D,AB=DE,求证:BC∥EF26.已知等腰三角形ABC的底边长BC=20cm,D是AC上的一点,且BD=16cm,CD=12cm.(1)求证:BD⊥AC;(2)求△ABC的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.2、C【分析】根据二次根式的被开方数必须大于等于0即可确定的范围.【详解】∵式子在实数范围内有意义∴解得故选:C.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3、B【分析】设两个大正方形边长为x,小正方形的边长为y,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形被分成个正方形和个长方形后仍是中心对称图形,两个大正方形相同、个长方形相同.设小正方形边长为,大正方形的边长为,小长方形的边长分别为、,大长方形边长为、.长方形周长,即:,,.个正方形和个长方形的周长和为,,,.标号为①的正方形的边长.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.4、B【分析】先根据等边对等角求出,再根据外角的性质,利用即可求解.【详解】解:又故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.5、B【解析】试题解析:实际每天生产零件x个,那么表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,表示原计划用的时间-实际用的时间=10天,说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.6、B【分析】根据三线合一推出BD=DC,再根据两个三角形的周长进而得出AD的长.【详解】解:∵AB=AC,且AD⊥BC,∴BD=DC=BC,∵AB+BC+AC=2AB+2BD=24,∴AB+BD=12,∴AB+BD+AD=12+AD=20,解得AD=1.故选:B.【点睛】本题考查了等腰三角形的性质,做题时应该将已知和所求联系起来,对已知进行灵活运用,从而推出所求.7、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.8、C【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.9、A【分析】先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.【详解】平分,平分,,,,,,,,在中,由勾股定理得:,故选:A.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.10、B【分析】分别根据算术平方根的定义,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.,故本选项不合题意;B.(ab2)3=a3b6,正确;C.a6÷a2=a4,故本选项不合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根,幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,熟记相关运算法则是解答本题的关键.11、D【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.12、A【分析】根据分式的值为0的条件:分子等于0,分母不为0解答即可.【详解】∵分式的值为0,∴x2-4=0且x2-4x+4≠0,解得:x=-2.故选A.【点睛】本题考查的是分式的值为0的条件,即分子等于零且分母不等于零.二、填空题(每题4分,共24分)13、16【分析】根据2和7可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为16【点睛】本题主要考查了三角形三边关系,也考查了等腰三角形的性质.关键是根据2,7,分别作为腰,由三边关系定理,分类讨论.14、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.15、角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN∴OP平分∠AOB(在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.16、【解析】通过设k法计算即可.【详解】解:∵,∴设a=2k,b=3k(k≠0),则,故答案为:.【点睛】本题考查比例的性质,比较基础,注意设k法的使用.17、1【分析】把,代入求值即可.【详解】当,时,===1.故答案是:1.【点睛】本题主要考查二次根式的值,掌握算术平方根的定义,是解题的关键.18、110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.
∵∠3=∠1+∠B,∠4=∠2+∠C.
∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.
∵∠A=47°,∠B=38°,∠C=25°.
∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题(共78分)19、.【分析】根据等式的基本性质将已知等式变形,然后利用整体代入法和分式的基本性质约分即可求出分式的值.【详解】解:∵∴a+b=5ab,∴====.【点睛】此题考查的是求分式的值,掌握等式的基本性质和分式的基本性质是解决此题的关键.20、1-【解析】按照运算顺序,先算除法,再算减法化简后代入数值即可.【详解】原式===当x=-2时,原式=【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则及正确的分解因式并约分是关键.21、(1)﹣4≤y<1;(2)点P的坐标为(2,﹣2).【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=1,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<1.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质22、(1)(10﹣2t);(2)t=2.5;(3)2.4或2【分析】(1)根据P点的运动速度可得BP的长,再利用BC﹣BP即可得到CP的长;(2)当t=2.5时,△ABP≌△DCP,根据三角形全等的条件可得当BP=CP时,再加上AB=DC,∠B=∠C可证明△ABP≌△DCP;(3)此题主要分两种情况①当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP;②当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,然后分别计算出t的值,进而得到v的值.【详解】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当t=2.5时,△ABP≌△DCP,∵当t=2.5时,BP=2.5×2=5,∴PC=10﹣5=5,∵在△ABP和△DCP中,,∴△ABP≌△DCP(SAS);(3)①如图1,当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP,∵PB=PC,∴BP=PC=BC=5,2t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(秒).②如图2,当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,2v=4,解得:v=2;综上所述:当v=2.4秒或2秒时△ABP与△PQC全等.【点睛】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.23、(3)小王购买A,B两种品牌龟苓膏粉分别为633包,433包(4)y=-4x+43533(3)A品牌的龟苓膏粉每包定价不低于44元时才不亏本【解析】试题分析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,根据题意列方程解出即可;(4)根据题意,可得y=533+3.8×[43x+45(3333﹣x)],据此求出y与x之间的函数关系式即可.(3)先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以345z+875(z+5)≥43333+8×3333,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可.试题解析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则,解得:,∴小王购买A、B两种品牌龟苓膏粉分别为633包、433包;(4)y=533+3.8×[43x+45(3333﹣x)]=533+3.8×[45333﹣5x]=533+43333﹣4x=﹣4x+43533,∴y与x之间的函数关系式是:y=﹣4x+43533;(3)由(4),可得:43333=﹣4x+43533,解得x=345,∴小王购买A、B两种品牌龟苓膏粉分别为345包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴345z+875(z+5)≥43333+8×3333,解得z≥4.645,∴A品牌的龟苓膏粉每包定价不低于44元时才不亏本.考点:3.一次函数的应用;4.综合题.24、(1)①1°;②1°;(2)∠BFE=α.【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年出售转让单梁行车合同范本
- 2024年出售铝厂铝渣合同范本
- 2024年代理补账合同范本
- 2024年便利店挂名协议书模板范本
- 乳腺癌手术手术室
- 江苏省无锡市宜兴市2024-2025学年八年级上学期期中语文试卷(含答案解析)
- 可复制的领导力培训课程
- 2024经济金融热点
- 产前助产手术
- 2024柑桔采购合同范本参考
- 施工工程可索赔内容清单表
- 静脉的输液并发症防治及处理措施课件
- XX化工有限责任公司维保方案
- 社会消防技术服务机构质量管理体系创建指南、程序文件和记录清单、记录表单参考模板、评价工具、判定准则
- 《智慧农业》的ppt完整版
- 水闸维修养护技术规程-共89页PPT课件
- 蓝色简约商务工作总结汇报PPT模板课件
- 新技能英语Unit 5
- 家庭植物养护
- s3-2多级汽轮机的损失及汽轮机装置的效率
- 数学建模第02章_简单的优化模型
评论
0/150
提交评论