版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知y=m+3xm2−8是正比例函数,则A.8 B.4 C.±3 D.32.在平面直角坐标系中,点在第()象限.A.一 B.二 C.三 D.四3.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,44.如图,在中,点、、的坐标分别为、和,则当的周长最小时,的值为()A. B. C. D.5.已知,为内一定点,上有一点,上有一点,当的周长取最小值时,的度数是A. B. C. D.6.设△ABC的三边分别为a,b,c,满足下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=90° B.b2=a2-c2C.∠A:∠B:∠C=3:4:5 D.a:b:c=5:12:137.下列计算正确的是()A. B. C. D.8.在圆周长的计算公式C=2πr中,变量有()A.C,π B.C,r C.C,π,r D.C,2π,r9.如图所示,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是A. B. C. D.10.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90° C.100° D.30°11.下列四个分式中,是最简分式的是()A. B. C. D.12.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1 B.a2+4 C.a2+2a+1 D.a2﹣4a﹣4二、填空题(每题4分,共24分)13.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.14.点(2,1)到x轴的距离是____________.15.若4a=2,4b=3,则42a+b的值为_____.16.中,边的垂直平分线交于点,交的外角平分线于点,过点作交的延长线于点,连接,.若,,那么的长是_________.17.化简的结果是_____________.18.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)三、解答题(共78分)19.(8分)计算(1)(-3x2y2)2·(2xy)3÷(xy)2(2)8(x+2)2-(3x-1)(3x+1)(3)(π﹣3.14)0+|﹣2|﹣.(4)20.(8分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)21.(8分)在正方形网格中,每个小方格都是边长为1的正方形,建立如图所示的平面直角坐标系,的三个顶点都落在小正方形方格的顶点上(1)点A的坐标是,点B的坐标是,点C的坐标是;(2)在图中画出关于y轴对称的;(3)直接写出的面积.22.(10分)如图,AB=AC,AD=AE.求证:∠B=∠C.23.(10分)如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?24.(10分)已知:△ABC中,BO平分∠ABC,CO平分∠ACB(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.25.(12分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589______乙89969180____________(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按,计算哪个学生数学综合素质测试成绩更好?请说明理由.26.列二元一次方程组解决问题:某校八年级师生共人准备参加社会实践活动,现已预备了两种型号的客车共辆,每辆种型号客车坐师生人,每辆种型号客车坐师生人,辆客车刚好坐满,求两种型号客车各多少辆?
参考答案一、选择题(每题4分,共48分)1、D【解析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.2、B【分析】根据各象限内点的坐标特征解答.【详解】∵-2<0,3>0∴点P(−2,3)在第二象限故选B.【点睛】此题考查点的坐标,解题关键在于掌握各象限内点的坐标特征.3、D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.4、B【分析】作点B关于x轴的对称点D,连接CD交x轴于点A,因为BC的长度不变,所以根据轴对称的性质可知此时的周长最小.【详解】作点B关于x轴的对称点D,连接CD交x轴于点A,此时的周长最小.作CE⊥y轴于点E.∵B(0,1),∴D(0,-1),∴OB=OD=1.∵C(3,2),∴OC=2,CE=3,∴DE=1+2=3,∴DE=CE,∴∠ADO=45°,OA=OD=1,∴m=1.故选B.【点睛】本题考查了等腰直角三角形的判定与性质,图形与坐标的性质,以及轴对称最短的性质,根据轴对称最短确定出点A的位置是解答本题的关键.5、C【分析】设点关于、对称点分别为、,当点、在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.【详解】分别作点关于、的对称点、,连接、、,交、于点、,连接、,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:.【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.6、C【分析】根据题意运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形,从而分别判定即可.【详解】解:A.∵∠A+∠B=90°,∴=90°,△ABC是直角三角形;B.∵b2=a2-c2∴△ABC是直角三角形;C.∵∠A:∠B:∠C=3:4:5,∴△ABC不是直角三角形;D.∵a:b:c=5:12:13∴,△ABC是直角三角形.故选:C.【点睛】本题主要考查勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.7、D【分析】分别利用二次根式加减乘除运算法则化简求出答案即可【详解】解:A、不是同类项,不能合并,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、,故本选项错误;D、;故本选项正确;故选:D【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8、B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】圆的周长计算公式是,C和r是变量,2和是常量故选:B.【点睛】本题考查了常量和变量的概念,掌握理解相关概念是解题关键.9、B【分析】根据全等三角形的判定的方法进行解答即可.【详解】A、∵AB∥DC,∴∠BAC=∠DCA,由,得出△ADC≌△CBA,不符合题意;B、由AB=CD,AC=CA,∠2=∠1无法得出△ADC≌△CBA,符合题意;C、由得出△ADC≌△CBA,不符合题意;D、由得出△ADC≌△CBA,不符合题意;故选C.【点睛】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ADC≌△CBA的另一个条件.10、C【详解】∠A=∠ACD﹣∠B=120°﹣20°=100°,故选C.11、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【点睛】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.12、C【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A.
不符合完全平方公式法分解因式的式子特点,故错误;B.
不符合完全平方公式法分解因式的式子特点,故错误;C.符合完全平方公式法分解因式的式子特点,故正确;D.,不符合完全平方公式法分解因式的式子特点,故错误.故选C.【点睛】本题考查因式分解-运用公式法.二、填空题(每题4分,共24分)13、(4,3).【解析】试题分析:由关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),可得:与点(4,-3)关于x轴对称的点是(4,3).考点:关于x轴、y轴对称的点的坐标.14、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】解:点(2,1)到x轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.15、1【分析】根据幂的乘方以及同底数幂的乘法法则计算即可.【详解】解:∵4a=2,4b=3,∴42a+b=(4a)2•4b=22×3=4×3=1.故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.16、1【分析】作EG⊥AC,利用HL证明Rt△BEH≌Rt△CEG,可得CG=BH,再根据角平分线定理可得AG=AH,由此可以算出AC.【详解】过点E作EG⊥AC交AC于点G,∵AE平分∠FAC,∴AG=AH=3,EG=EH,∵DE是BC的垂直平分线,∴EC=EB,在Rt△BEH和Rt△CEG中∴Rt△BEH≌Rt△CEG(HL),∴CG=BH=AB+AH=18,∴AC=AG+GC=18+3=1.故答案为:1.【点睛】本题考查三角形全等的判定和性质、角平分线的性质、垂直平分线的性质,关键在于合理利用辅助线找到关键的对应边.17、【分析】根据分式的减法法则计算即可.【详解】解:==故答案为:.【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.18、①②③④【分析】由三角形内角和定理可得∠ABC=∠ACB,可得AB=AC;由AAS可证△BEC≌△CDB;可得BE=CD,可得AD=AE;通过证明△AOB≌△AOC,可证点O在∠BAC的平分线上.即可求解.【详解】解:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形,故②符合题意;∵∠OBC=∠OCB,∠BDC=∠BEC=90°,且BC=BC,∴△BEC≌△CDB(AAS),故①符合题意,∴BE=CD,且AB=AC,∴AD=AE,故③符合题意;连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上,故④符合题意,故正确的答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质,解题的关键是:灵活运用全等三角形的判定和性质.三、解答题(共78分)19、(1)72x5y5;(2)-x2+32x+33;(3)12-5;(4).【分析】(1)原式第一项利用积的乘方及幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;
(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果;(3)原式第一项利用零指数幂法则,第二项利用绝对值进行化简,第三项利用算术平方根定义计算,最后一项利用负整数指数幂化简,计算即可得到结果;(4)原式利用平方根的定义化简,合并即可得到结果;【详解】解:(1)原式=9x4y4•8x3y3÷x2y2=72x7-2y4+3-2=72x5y5;
(2)原式=8(x2+4x+4)-(9x2-1)=8x2+32x+32-9x2+1=-x2+32x+33;(3)原式=1+2-﹣=12-5.(4)原式===.【点睛】此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20、见解析【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【详解】(1)如图所示:(2)如图所示:.21、(1),,;(2)图见解析;(3)的面积为1.【分析】(1)结合网格的特点,根据在平面直角坐标系中,点的位置即可得;(2)先分别画出点关于y轴的对称点,再顺次连接即可得;(3)根据的面积等于正方形ADEF的面积减去三个直角三角形的面积即可得.【详解】(1)结合网格的特点,由在平面直角坐标系中,点的位置得:点A的坐标为,点B的坐标为,点C的坐标为故答案为:,,;(2)先分别画出点关于y轴的对称点,再顺次连接可得到,如图所示:(3)结合网格可知,四边形ADEF是正方形,都是直角三角形则故的面积为1.【点睛】本题考查了平面直角坐标系、画轴对称图形等知识点,掌握轴对称图形的画法是解题关键.22、证明见解析.【分析】欲证明∠B=∠C,只要证明△AEB≌△ADC.【详解】证明:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS)∴∠B=∠C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件23、(1)24米;(2)8米.【分析】(1)根据勾股定理计算即可;(2)计算出长度,根据勾股定理求出,问题得解.【详解】(1)根据题意得,∴梯子顶端距地面的高度米;(2)=米,∵∴根据勾股定理得,米,∴米,答:梯子下端滑行了8米.【点睛】本题考查勾股定理的应用,难度不大,解题的关键在于根据题意得到,根据勾股定理解决问题.24、(1)∠BOC=90°+∠A,理由详见解析;(2)详见解析;(3)∠BOE+∠COF﹣∠P=180°.【分析】(1)根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解;(2)证明∠P=90°﹣∠A,得到∠P+∠BOC=180°即可解决问题;(3)画出图形由∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,可得∠BOE+∠COF﹣∠P=180°.【详解】解:(1)∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;(2)∵BP、CP分别平分外角∠DBC、∠GCB,∴∠PBC=∠CBD,∠PCB=∠BCG,∴∠P=180°﹣∠CBP﹣∠BCP)=180°﹣(∠CBD+∠BCG)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180°+∠A)=90°﹣∠A,∴∠P+∠BOC=180°,∵∠BOC+∠BOE+∠COF=180°,∴∠P=∠BOE+∠COF;(3)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度房地产开发项目承包商资金保障担保合同3篇
- 2025年度拆迁安置补偿合同模板(含房屋买卖)4篇
- 2025年度厂房用电安全改造安装合同范本4篇
- 2025年度城市地下综合管廊建设场地平整与施工合同4篇
- 2025年度茶园场地承包合同范本-茶树种植基地合作经营4篇
- 2024年04月江苏交通银行信用卡中心苏州分中心校园招考笔试历年参考题库附带答案详解
- 临时暑期工劳动协议格式2024年版B版
- 2025年度茶园采摘加工一体化项目合作协议4篇
- 2025年度建筑材料运输安全管理与培训合同3篇
- 2024版游泳馆综合服务承包协议样本版B版
- 2024人教新版七年级上册英语单词英译汉默写表
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 【地理】地图的选择和应用(分层练) 2024-2025学年七年级地理上册同步备课系列(人教版)
- 2024年深圳中考数学真题及答案
- 土方转运合同协议书
- Module 3 Unit 1 Point to the door(教学设计)-2024-2025学年外研版(三起)英语三年级上册
- 智能交通信号灯安装合同样本
- 安全生产法律法规清单(2024年5月版)
- 江苏省连云港市2023-2024学年八年级下学期期末道德与法治试卷(含答案解析)
- 2024年大学试题(宗教学)-佛教文化笔试考试历年高频考点试题摘选含答案
评论
0/150
提交评论