版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.-33 C.-7 D.73.点在第二象限内,那么点的坐标可能是()A. B. C. D.4.下列图案不是轴对称图形的是()A. B. C. D.5.如图,,,过作的垂线,交的延长线于,若,则的度数为()A.45° B.30° C.22.5° D.15°6.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,47.下列说法错误的是()A.所有的等边三角形都是全等三角形 B.全等三角形面积相等C.三条边分别相等的两个三角形全等 D.成轴对称的两个三角形全等8.下列命题,假命题是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,另一组对边相等的四边形是平行四边形9.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心大于的长为半径画弧,两弧交于点,作射线交边于点,若,则的面积是()A.15 B.18 C.36 D.7210.下列说法正确的是()A.的立方根是 B.﹣49的平方根是±7C.11的算术平方根是 D.(﹣1)2的立方根是﹣111.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2 B.4 C.6 D.812.下列计算结果正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.把多项式分解因式的结果是___________________.14.若分式的值为0,则y=_______15.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.16.计算:,则__________.17.如图,在△ABC中,AB=AC,∠ABM=∠CBN,MN=BN,则∠MBC的度数为_________°.18.点关于轴对称的点的坐标是,则点坐标为__________三、解答题(共78分)19.(8分)解方程:(1);(2).20.(8分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.21.(8分)某条道路限速如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,小汽车到达B处,此时测得小汽车与车速测检测仪间的距离为,这辆小汽车超速了吗?22.(10分)如图,对于边长为2的等边三角形,请建立适当的平面直角坐标系,并写出各个顶点的坐标.23.(10分)用简便方法计算:(1)(2)24.(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.25.(12分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.26.阅读与思考:因式分解----“分组分解法”:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如,四项的多项式一般按照“两两”分组或“三一”分组进行分组分解.分析多项式的特点,恰当的分组是分组分解法的关键.例1:“两两”分组:我们把和两项分为一组,和两项分为一组,分别提公因式,立即解除了困难.同样.这道题也可以这样做:例2:“三一”分组:我们把,,三项分为一组,运用完全平方公式得到,再与-1用平方差公式分解,问题迎刃而解.归纳总结:用分组分解法分解因式的方法是先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①;②(2)若多项式利用分组分解法可分解为,请写出,的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称3、C【分析】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正即可得出答案.【详解】根据第二象限内点坐标的特点:横坐标为负,纵坐标为正,只有满足要求故选:C.【点睛】本题主要考查第二象限内点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4、D【解析】根据轴对称图形的概念,沿着某条直线翻折,直线两侧的部分能够完全重合的图形是轴对称图形,因此D不是轴对称图形,故选D.5、C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,
∵∠ACB=90°,AC=CD,
∴∠DAC=∠ADC=45°,
∵∠ACB=90°,DE⊥AB,
∴∠DEB=90°=∠ACB=∠DCM,
∵∠ABC=∠DBE,
∴∠CAB=∠CDM,
在△ACB和△DCM中∴△ACB≌△DCM(ASA),
∴AB=DM,
∵AB=2DE,
∴DM=2DE,
∴DE=EM,
∵DE⊥AB,
∴AD=AM,故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM是解此题的关键.6、B【分析】根据三角形的三边关系:三角形两边之和大于第三边.【详解】解:A、3+3=6,不能组成三角形,故此选项错误;
B、1+5>5,能组成三角形,故此选项正确;
C、1+2=3,不能组成三角形,故此选项错误;
D、3+4<8,不能组成三角形,故此选项错误;
故选B.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形的三边关系.7、A【分析】根据全等三角形的判定和性质、成轴对称图形的概念对各选项分析判断即可解答.【详解】A.所有的等边三角形有大有小,不一定全对,故此选项错误,符合题意;B.全等三角形的面积相等,故此选项正确,不符合题意;C.三条边分别相等的三角形全等,此选项正确,不符合题意;D.成轴对称的两个三角形全等,此选项正确,不符合题意,故选:A.【点睛】本题考查全等三角形的判定与性质、成轴对称图形的概念,熟练掌握全等三角形的判定与性质是解答的关键.8、D【分析】根据平行四边形的判定定理依次判断即可得到答案.【详解】解:两组对边分别平行的四边形是平行四边形,A是真命题;两组对边分别相等的四边形是平行四边形,B是真命题;对角线互相平分的四边形是平行四边形,C是真命题;一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,D是假命题;故选:D.【点睛】此题考查命题的分类:真命题和假命题,正确的命题是真命题,错误的命题是假命题,熟记定义并熟练运用其解题是关键.9、B【解析】作DE⊥AB于E,根据角平分线的性质得到DE=DC=3,根据三角形的面积公式计算即可.【详解】如图,作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=3,∴△ABD的面积=×AB×DE=×12×3=18,故选B.【点睛】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、C【详解】解:A、的立方根是:,故此选项错误;B、﹣49没有平方根,故此选项错误;C、11的算术平方根是,正确;D、的立方根是1,故此选项错误;故选C.【点睛】本题考查一个正数有两个平方根,这两个平方根互为相反数,其中正的平方根叫做算术平方根.11、B【分析】根据三角形的中线把三角形分成面积相等的两部分可得S△BDE=S△ABD,S△DEC=S△ADC,S△BEF=S△BEC,然后进行等积变换解答即可.【详解】解:如图,∵E是AD的中点,∴S△BDE=S△ABD,S△DEC=S△ADC,∴S△BDE+S△DEC=S△ABD+S△ADC,即S△BEC=S△ABC=8,∵点F是CE的中点,∴S△BEF=S△BEC=4,故选B.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键.12、D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A.,该选项错误;B.,该选项错误;C.不是同类项不可合并,该选项错误;D.,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.二、填空题(每题4分,共24分)13、【分析】先提取公因式,然后按照平方差公式分解因式即可.【详解】原式=故答案为:.【点睛】本题主要考查因式分解,掌握提取公因式法和平方差公式是解题的关键.14、-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式的值等于0,则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1.若分式的值等于0,则y=-1.
故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.15、【分析】根据图形的分割前后面积相等,分别用大正方形的面积等于分割后四个小的图形的面积的和,即可得出结论.【详解】如图可知,把大正方形分割成四部分,大正方形的边长为,大正方形面积为,两个小正方形的面积分别为、,两个长方形的面积相等为,所以有,故答案为:..【点睛】分割图形,找到分割前后图形的关系,利用面积相等,属于完全平方公式的证明,找到、的关系式,即可得出结论.16、-1【分析】先根据二次根式与绝对值的非负性及非负数之和为零,得到各项均为零,再列出方程组求解即可.【详解】∵,,∴,∴解得:∴故答案为:-1.【点睛】本题主要考查了二次根式的非负性、绝对值的非负性及乘方运算,根据非负数之和为零得出各项均为零是解题关键.17、1【分析】可设∠ABM=∠CBN=α,∠MBN=∠BMN=β,利用三角形外角的性质,得出β=α+∠A,而∠C=∠ABC=2α+β,结合三角形内角和定理可求出β+α=1°,即可得出∠MBC的度数.【详解】解:设∠ABM=∠CBN=α,
∵BN=MN,可设∠MBN=∠BMN=β,
∵∠BMN是△ABM的外角,
∴∠BMN=α+∠A,
即β=α+∠A,∴∠A=β-α,
∵AB=AC,
∴∠ABC=∠C=2α+β,
∵∠A+∠B+∠C=180°,∴β-α+2(2α+β)=180°,
∴β+α=1°,∴∠MBC=β+α=1°.故答案为:1.【点睛】本题利用了三角形内角和定理、等腰三角形的性质、三角形外角的性质.注意解此题可设出未知数,表示角的时候比较容易计算.18、(-3,-1)【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:∵点关于轴对称的点的坐标是,∴点A的坐标为故答案为:.【点睛】此题考查的是关于x轴对称的两点坐标关系,掌握关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数是解决此题的关键.三、解答题(共78分)19、(1);(2).【分析】(1)两边都乘以2x(x+3)化为整式方程求解,然后验根即可(2)两边都乘以x(x-1)化为整式方程求解,然后验根即可【详解】(1),两边都乘以2x(x+3),得x+3=4x,解得x=1,检验:当x=1时,2x(x+3)≠0,∴原方程的解是x=1.(2)两边都乘以x-2,得1-x-x-3=x-2,解得x=0,检验:当x=0时,x-2≠0,∴原方程的解是x=0.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.20、14【解析】根据勾股定理得AB=7,由旋转性质可得∠A′BA=90°,A′B=AB=7.继而得出AA′=14.【详解】∵点A(2,0),点B(0,3),∴OA=2,OB=3.在Rt△ABO中,由勾股定理得AB=7.根据题意,△A′BO′是△ABO绕点B逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=7,∴AA′=A'B2+A【点睛】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.21、小汽车超速了.【分析】根据勾股定理求出小汽车在内行驶的距离,再求出其速度,与比较即可.【详解】解:在中,米,,所以小汽车超速了.【点睛】本题结合速度问题考查了勾股定理的应用,理解题意,合理运用定理是解答关键.22、见解析【分析】以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.【详解】如图,以BC所在是直线为x轴,以过A垂直于BC的直线为y轴,建立坐标系,O为原点,∵△ABC是正△ABC,∴O为BC的中点,而△ABC的边长为2,∴BO=CO=1,在Rt△AOB中,AB2=AO2+BO2,∴AO=,∴B(−1,0),C(1,0),A(0,).【点睛】本题主要考查坐标与图形的性质,等边三角形的性质,勾股定理的运用,建立适当的平面直角坐标系是解题的关键.23、(1)1;(2)-1【分析】(1)把原式变成符合完全平方公式的形式后,利用完全平方公式计算即可得到结果;(2)把原式的前两项用平方差公式变形后及时可得到结果.【详解】解:(1)原式=
=(100−99)2
=1(2)原式=(2019-1)×(2019+1)−20192
=20192−12−20192
=−1;【点睛】本题考查了运用平方差公式和完全平方公式进行简便计算,熟练掌握公式是解本题的关键.24、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式===的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.25、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省莆田市2023-2024学年高二下学期7月期末考试历史
- 湖北科技出版社三上生命安全教育教案
- 学校安全教育教案
- JGJ18-2012钢筋焊接及验收规程
- 专利技术转让私人居间合同
- KTV木工修缮合同范本
- 4S店涂装油漆施工合同
- O2O建材家居平台建设运营商业计划书
- 2024年软件公司竞业禁止
- 2024年重庆货运资格证模拟考试题
- 2024-2030年中国工业脱水机行业发展状况及投资方向分析报告
- 网络传播法导论(第2版)课件 第五章 侵害名誉权
- 环评手续转让协议(2篇)
- 上海市高行中学2024-2025学年高二上学期9月质量检测数学试卷
- 胸外科快速康复护理课件
- 医院污水处理运维服务投标方案(技术方案)
- 2024年高考最后一套压轴卷-文综试题(全国甲卷)含解析
- 苏教版数学长方体与正方体表面积解析
- 2024年国家开放大学形考作业答案
- 2024年湖南长沙环境保护职业技术学院招聘专任教师历年(高频重点复习提升训练)共500题附带答案详解
- 中考数学专题训练一元二次方程(50道计算题)(无答案)
评论
0/150
提交评论