版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在下列各数中,无理数是()A. B. C. D.2.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.53.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm4.如图,中,,,.设长是,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③是13的算术平方根;④.其中所有正确说法的序号是()A.①② B.①③C.①②③ D.②③④5.一次函数的图象经过()A.第、、象限 B.第、、象限 C.第、、象限 D.第、、象限6.如图,中,、的垂直平分线分别交于、,则()A. B.C. D.7.如果一个数的平方根与立方根相同,那么这个数是().A.0 B. C.0和1 D.0或8.下列代数式中,属于分式的是()A.-3 B. C. D.9.下列分式不是最简分式的是()A. B. C. D.10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为______.12.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.13.如图,已知,请你添加一个条件使__________.14.在实数范围内,把多项式因式分解的结果是________.15.计算的结果是__________.16.如图,,,.给出下列结论:①;②;③;④.其中正确结论的序号是__________.17.肥皂泡的泡壁厚度大约是,用科学记数法表示为_______.18.如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)证明:在运动过程中,点D是线段PQ的中点;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.20.(6分)(模型建立)(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;(模型应用)(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.21.(6分)如图①,已知是等腰三角形,是边上的高,垂足为,是底边上的高,交于点.(1)若.求证:≌;(2)在图②,图③中,是等腰直角三角形,点在线段上(不含点),,且交于点,,垂足为.ⅰ)如图②,当点与点重合,试写出与的数量关系;ⅱ)如图③,当点在线段上(不含点,)时,ⅰ)中的结论成立吗?如果成立,请证明;如果不成立,请说明理由.22.(8分)学校到--家文具店给九年级学生购买考试用文具包,该文具店规一次购买个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款元;若再多买个就可享受八折优惠,并且同样只需付款元.求该校九年级学生的总人数.(列分式方程解答)23.(8分)小明遇到这样一个问题如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.24.(8分)育红中学在元旦举行了一次成语知识竞赛,满分为分,学生得分均为整数,成绩达到分及分以上为合格,达到分或分为优秀.这次竞赛中甲、乙两组学生成绩分布的折线图如图所示:组别平均数中位数方差合格率优秀率甲组乙组(1)求出成绩统计分析表中,的值;(2)张明说:“这次竞赛我得了分,在我们小组中排名属于中游略偏上!”观察上面的表格和折线图,判断张明是甲、乙哪个组的学生,简单说明理由.(3)乙组同学说他们组的合格率、优秀率均高于甲组,所以他们组的成绩好于甲组,但是甲组同学不同意乙组同学的说法,认为他们组的成绩要好于乙组.请你写出两条支持甲组同学观点的理由.25.(10分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?26.(10分)如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据无理数的定义进行判断即可.【详解】解:∵=2,=2,∴,,都是有理数,3π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.2、D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.3、B【详解】解:如图,∵BD是△ABC的中线,
∴AD=CD,
∴两三角形的周长的差等于腰长与底边的差,
∵BC=5cm,
∴AB-5=3或5-AB=3,
解得AB=8或AB=2,
若AB=8,则三角形的三边分别为8cm、8cm、5cm,
能组成三角形,
若AB=2,则三角形的三边分别为2cm、2cm、5cm,
∵2+2=4<5,
∴不能组成三角形,
综上所述,三角形的腰长为8cm.
故选:B.故选B.4、C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在RtABC中,m=AB==,故①②③正确,∵m2=13,9<13<16,∴3<m<4,故④错误,故选:C.【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.5、A【分析】根据一次函数解析式系数的正负性判断函数图象经过的象限.【详解】解:一次函数中.,,此函数的图象经过一、二、三象限.故选A.【点睛】本题考查一次函数图象经过的象限,解题的关键是掌握一次函数图象的性质.6、D【分析】根据线段的垂直平分线的性质得到DA=DB,EA=EC,得到∠B=∠DAB和∠C=∠EAC,根据三角形内角和定理计算得到答案.【详解】∵DM是线段AB的垂直平分线,
∴DA=DB,
∴∠B=∠DAB,
同理∠C=∠EAC,
∵,即,又∵,∴,整理得:,故选:D.【点睛】本题主要考查的是线段垂直平分线的性质及等腰三角形的性质,三角形的内角和定理知识点的理解和掌握,能综合运用这些性质进行列式计算是解此题的关键.7、A【分析】根据平方根、立方根的定义依次分析各选项即可判断.【详解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与它的立方根相同的数是0,故选A.【点睛】本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.8、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:-3;;是整式;符合分式的概念,是分式故选:C【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.9、B【分析】根据最简分式的概念即可得出答案.【详解】解:A、无法再化简,所以是最简分式,故A选项错误;B、,所以不是最简分式,故B选项正确;C、无法再化简,所以是最简分式,故C选项错误;D、无法再化简,所以是最简分式,故D选项错误故答案为:B.【点睛】本题考查最简分式的概念,熟记最简分式的概念是解题的关键.10、A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.二、填空题(每小题3分,共24分)11、和【解析】试题分析:首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为40°或100°.考点:等腰三角形的性质;三角形内角和定理.12、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【点睛】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.13、AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一)【分析】根据图形可知证明△ABC≌△ADE已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【详解】解:∵∠A=∠A,AB=AD,
∴添加条件AC=AE,此时满足SAS;
添加条件∠ADE=∠ABC,此时满足ASA;
添加条件∠C=∠E,此时满足AAS,
故答案为:AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一).【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.14、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】==故答案是:【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.15、【分析】先算开方,再算乘法,最后算减法即可.【详解】故答案为:.【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则是解题的关键.16、①②③【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC,∴∠EAB−CAB=∠FAC−∠CAB,即∠1=∠2,∴①正确;在△EAB和△FAC中∴△EAB≌△FAC,∴BE=CF,AC=AB,∴②正确;在△ACN和△ABM中∴△ACN≌△ABM,∴③正确;∵根据已知不能推出CD=DN,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.17、7×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、(1)见解析;(2)AP=2;(1)DE的长不变,定值为1.【分析】(1)过P作PF∥QC交AB于F,则是等边三角形,根据AAS证明三角形全等即可;(2)想办法证明BD=DF=AF即可解决问题;(1)想办法证明即可解决问题.【详解】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在和中,,∴,∴DQ=DP;(2)解:∵,∴BD=DF,∵,∴,∴,∴AP=2;(1)解:由(2)知BD=DF,∵是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=1,为定值,即DE的长不变.【点睛】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.三、解答题(共66分)19、(1)见解析;(2);(3)见解析.【分析】(1)根据图形的对称性,分别作三点关于轴对称的点,连接三点即得所求图形;(2)根据图形和条件可以得出是等腰直角三角形,由勾股定理求出直角边长,通过面积公式计算即得;(3)根据等腰三角形三线合一,找到点关于直线的对称点,连接即得.【详解】(1)作图如下:由点的对称性,作出对称的顶点,连接的所求作图形;(2)由题意可知,为等腰直角三角形,由勾股定理可得,,故答案为:;(3)作图如下,作线段EF交AC于点D,则点D为AC中点,由等腰三角形性质,三线合一可知,连接即为的平分线.【点睛】考查了对称的性质,等腰直角三角形的面积求法,勾股定理得应用以及等腰三角形的三线合一的性质,熟记几何图形性质是做题的关键.20、(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(,).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则,解得:,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(,).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=,∴−2x+6=,∴D(,),此时,ED=PF=,AE=BF=,BP=PF−BF=<6,符合题意,综上所述,D点坐标为:(4,−2)或(,)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.21、(1)见解析;(2)ⅰ);ⅱ)成立,证明见解析【分析】(1)如图1,根据同角的余角相等证明,利用ASA证明≌;(2)①如图2,作辅助线,构建全等三角形,证明≌,则CP=AF,再证明≌,可得结论;②结论仍然成立,过点作的平行线交于,且于的延长线相交于点,证明≌,得,再证明≌即可求解.【详解】证明:(1)∵∴∵∴在和中∴≌;(2)ⅰ):证明过程如下:延长、交于点∵∴∵∴∵是等腰直角三角形,∴AE=CE,又∴≌∴∵∴平分则∵∴又AD=AD∴≌(ASA)∴∴∴;ⅱ)成立,即证明如下:过点作的平行线交于,且于的延长线相交于点∴,∴=∴是等腰直角三角形,∴CQ=QB同理可得≌∴∵=∴BD平分则∵∴=90又BD=BD∴≌(ASA)∴∴∴.【点睛】本题是三角形的综合题,考查了全等三角形的性质和判定、等腰三角形的性质、等腰直角三角形的性质和判定,运用了类比的思想,作辅助线构建全等三角形是本题的关键,难度适中.22、该校九年级学生的总人数是人.【分析】首先设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是元,根据题意可得方程即可【详解】解:设该校九年级学生的总人数是人,由题意得,解得:,经检验:是原分式方程的解,且符合题意.答:该校九年级学生的总人数是人.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.23、见解析【分析】方法1,利用等腰三角形的性质以及三角形内角和定理,即可得到∠ABC=2∠ACD.方法2,作BE⊥CD,垂足为点E.利用等腰三角形的性质以及同角的余角相等,即可得出∠ABC=2∠ACD.方法3,作CF⊥AB,垂足为点F.利用等腰三角形的性质以及三角形外角性质,即可得到∠ACF=2∠ACD,再根据同角的余角相等,即可得到∠B=∠ACF,进而得出∠B=2∠ACD.【详解】方法1:如图,∵∠ACB=90°,∴∠BCD=90°-∠ACD,又∵BC=BD,∴∠BCD=∠BDC,∴△BCD中,∠ABC=180°-∠BDC-∠BCD=180°-2∠BCD=180°-2(90°-∠ACD)=2∠ACD;方法2:如图,作BE⊥CD,垂足为点E.∵∠ACB=90°,∴∠ACD+∠BCE=∠CBE+∠BCE=90°,∴∠ACD=∠CBE,又∵BC=BD,BE⊥CD,∴∠ABC=2∠CBE,∴∠ABC=2∠ACD;方法3:如图,作CF⊥AB,垂足为点F.∵∠ACB=90°,∠BFC=90°,∴∠A+∠ABC=∠BCF+∠ABC=90°,∴∠A=∠BCF,∵BC=BD,∴∠BCD=∠BDC,即∠BCF+∠DCF=∠A+∠ACD,∴∠DCF=∠ACD,∴∠ACF=2∠ACD,又∵∠ABC+∠BCF=∠ACF+∠BCF=90°,∴∠ABC=∠ACF,∴∠ABC=2∠ACD.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的综合运用,解题时注意:等腰三角形的两个底角相等.24、(1)分,;(2)他是乙组的学生;(3)①甲组的平均分高于乙组,即甲组的总体平均水平高;②甲组的方差比乙组小,即甲组的成绩比乙组稳定.【分析】(1)由折线图中数据,根据平均数、中位数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可;【详解】解:(1)(分)乙组得分依次是:,,,,,,,,,,中位数n=.(2)因为甲组中位数是分,乙组中位数是分,张明的成绩分位于小组中上游,所以他是乙组的学生.(3)①甲组的平均分高于乙组,即甲组的总体平均水平高;②甲组的方差比乙组小,即甲组的成绩比乙组稳定.【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键25、(1)甲、乙两人每天各加工40、60个这种零件;(2)甲至
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地赔偿协议书范本
- 借名买车协议书
- 防水工程承包合同完整版模板
- 安全生产文明施工责任合同
- 甘肃省兰炼一中高三下学期第二次模拟文科综合试卷
- 2019高三数学(人教A版理)一轮教师用书专题探究课4立体几何中的高考热点问题
- 08包含二力或者多力平衡问题的力学综合计算-2022中考物理力学压轴计算题难题专练(原卷版)
- 第15课 两次鸦片战争 课件高一上学期历史统编版(2019)必修中外历史纲要上册
- 第6课 从隋唐盛世到五代十国 课件高一上学期统编版(2019)必修中外历史纲要上
- 工程物资与在建工程的区别
- 杭州本级公共租赁住房资格续审申请表Ⅴ
- GB/T 18281.7-2024医疗保健产品灭菌生物指示物第7部分:选择、使用和结果判断指南
- 北京四中初一年级期中语文试题
- 2024年消防宣传月知识竞赛考试题库300题(含答案)
- 妊娠期高血压护理
- 地理大洲和大洋 课件 2024-2025学年七年级地理上学期(2024)人教版
- 2024年事业单位考试(综合管理类A类)职业能力倾向测验试卷及答案指导
- 二十届三中全会精神学习试题及答案(100题)
- 2024二十届三中全会知识竞赛题库及答案
- 2024年江苏省昆山市自然资源和规划局招聘编外13人历年(高频重点复习提升训练)共500题附带答案详解
- 小学一年级拼音天天练
评论
0/150
提交评论