版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.实数-2,,,,-中,无理数的个数是:A.2 B.3 C.4 D.52.估计4﹣的值为()A.0到1之间 B.1到2之间 C.2到3之间 D.3到4之间3.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.4.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、5.如图,中,D为AB上一点,E为BC上一点,且,,则的度数为()A.50° B.60° C.70° D.75°6.在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数有()A.1个 B.2个 C.3个 D.0个7.对甲、乙、丙、丁四人进行射击测试,结果平均成绩均为9.2环,方差如下表所示:则在这四个选手中,成绩最稳定的是()A.丁 B.丙 C.乙 D.甲8.下列各命题的逆命题中,①三个角对应相等的两个三角形是全等三角形;②全等三角形对应边上的高相等;③全等三角形的周长相等;④两边及其中一边的对角对应相等的两个三角形是全等三角形;假命题是()A.①② B.①③ C.②③ D.①④9.为了能直观地反映我国奥运代表团在近八届奥运会上所获奖牌总数变化情况,以下最适合使用的统计图是()A.条形统计图 B.扇形统计图 C.折线统计图 D.三种都可以10.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为().A.45°; B.64°; C.71°; D.80°.二、填空题(每小题3分,共24分)11.若一个直角三角形的三边分别为x,4,5,则x=_____.12.若关于x的分式方程无解,则m=_________.13.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=度.14.若点P1(a+3,4)和P2(-2,b-1)关于x轴对称,则a+b=___.15.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是_____.16.甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示.则甲、乙射击成绩的方差之间关系是(填“<”,“=”,“>”).17.等腰三角形的两边长分别是3和7,则其周长为.18.如果一个数的平方根和它的立方根相等,则这个数是______.三、解答题(共66分)19.(10分)计算=20.(6分)化简求值:(3x+2y)(4x-5y)-11(x+y)(x-y)+5xy,其中x=3,y=-2.21.(6分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.22.(8分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.23.(8分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形;(2)当∠CAE等于多少度时△ABC是等边三角形,证明你的结论.24.(8分)如图,直线与y轴的交点为A,直线与直线的交点M的坐标为.(1)求a和k的值;(2)直接写出关于x的不等式的解集;(3)若点B在x轴上,,直接写出点B的坐标.25.(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.26.(10分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、中位数;(3)估计该单位750名职工共捐书多少本.
参考答案一、选择题(每小题3分,共30分)1、A【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A.考点:无理数的意义.2、A【分析】首先确定的取值范围,进而利用不等式的性质可得﹣的范围,再确定4﹣的值即可.【详解】解:∵<,∴3<<4,∴﹣4<﹣<﹣3,∴0<4﹣<1,故选:A.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.3、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.4、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、B【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:B.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.6、B【分析】在△ABC和△ADC中,有公共边AC,所以挑两个条件,看这两个三角形是否全等,再得出结论.【详解】∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选B.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.7、A【分析】先比较四位选手的方差的大小,根据方差的性质解答即可.【详解】∵2.93>1.75>0.50>0.4,
∴丁的方差最小,
∴成绩最稳定的是丁,
故选:A.【点睛】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、D【分析】写出各个命题的逆命题,根据全等三角形的判定定理和性质定理判断.【详解】解:①三个角对应相等的两个三角形是全等三角形的逆命题是全等三角形的三个角对应相等,是真命题;②全等三角形对应边上的高相等的逆命题是三边上的高相等的两个三角形全等,是真命题;③全等三角形的周长相等的逆命题是周长相等的两个三角形全等,是假命题;④两边及其中一边的对角对应相等的两个三角形是全等三角形的逆命题是全等三角形两边及其中一边的对角对应相等,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、C【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.【详解】为了直观地表示我国体育健儿在最近八届夏季奥运会上获得奖牌总数的变化趋势,结合统计图各自的特点,应选择折线统计图.故选C.【点睛】本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.10、C【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【详解】由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:C.【点睛】考查三角形内角和定理以及折叠的性质,掌握三角形的内角和定理是解题的关键.二、填空题(每小题3分,共24分)11、3或【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x=;(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3或.故答案为:3或.【点睛】本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.12、2【解析】因为关于x的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3,据此即可求解.【详解】两边同时乘以(x-3)去分母解得x=1+m,∵方程无解,∴说明有增根x=3,所以1+m=3,解得m=2,故答案为:2.【点睛】本题考查了分式方程的解,理解分式方程的增根产生的原因是解题的关键.13、1.【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.解:∵△ABC是等边三角形∴∠A=∠ACB=1°,AC=BC∵AD=CE∴△ADC≌△CEB∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.故答案为1.考点:等边三角形的性质;全等三角形的判定与性质.14、-2【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数,得出a、b的值即可得答案.【详解】解:由题意,得
a+3=-2,b-1=-1.
解得a=-5,b=-3,所以a+b=(-5)+(-3)=-2
故答案为:-2.【点睛】本题考查关于x轴对称的点的坐标,熟记对称特征:关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题关键.15、10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.故答案为10.16、<【分析】从折线图中得出乙的射击成绩,再利用方差的公式计算,最后进行比较即可解答.【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,10,7,9,10,7,10,8,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,乙的方差S乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35∴S2甲<S2乙.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、1【解析】试题分析:因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为1;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去.∴等腰三角形的周长为1.18、1【解析】试题解析:平方根和它的立方根相等的数是1.三、解答题(共66分)19、3【解析】原式=2+1=320、原式=x2-2xy+y2=36.【分析】先计算多项式的乘法,再去括号合并同类型,然后把x=3,y=-2.代入计算即可.【详解】解:原式=12x2-15xy+8xy-10y2-11(x2-y2)+5xy=12x2-15xy+8xy-10y2-11x2+11y2+5xy=x2-2xy+y2=(x-y)2当x=3,y=-2时,原式=[]2=36.【点睛】本题考查了整式的化简求值,熟练掌握整式的运算法则是解答本题的关键.21、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【点睛】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解决此题的关键.22、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【详解】解:证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.【点睛】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.23、(1)证明见解析;(2)120°,证明见解析.【分析】(1)由已知条件易得∠EAD=∠CAD,∠EAD=∠B,∠CAD=∠C,从而可得∠B=∠C,进一步可得AB=AC,由此即可得到△ABC是等腰三角形;(2)由(1)可知△ABC是等腰三角形,因此当∠BAC=60°,即∠CAE=120°时,△ABC是等边三角形.【详解】解:(1)∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.(2)当∠CAE=120°时,△ABC是等边三角形,理由如下:∵∠CAE=120°,∴∠BAC=180°-∠CAE=180°-120°=60°,又∵AB=AC,∴△ABC是等边三角形.24、(1),;(2);(3)【分析】(1)把M(3,a)代入求得,把M(3,3)代入y=kx,即可求得k的值;(2)由M(3,3)根据图象即可求得;(3)先求出AM的长度,作MN⊥x轴于N,根据勾股定理求出BN的长度即可得答案.【详解】解:∵直线与直线的交点为,在直线上,也在直线上,将的坐标代入,得,解得.∴点M的坐标为,将的坐标代入,得,解得.(2)因为:所以利用图像得的解集是.(3)作MN⊥轴于N,∵直线与轴的交点为A,∴A(0,),∵M(3,3),∴,∵MN=3,MB=MA,∴,所以:∴.(如图3).【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024《水电分包合同》
- 官帽美术课件
- 2024年电子计步器项目评价分析报告
- 2024至2030年中国防水密封盒数据监测研究报告
- 2024年短周期地震计项目评价分析报告
- 2024年脑血管病用药项目成效分析报告
- 2024至2030年中国翻盖式面罩数据监测研究报告
- 2024至2030年中国索线机数据监测研究报告
- 2024至2030年中国气相防锈拉伸缠绕膜行业投资前景及策略咨询研究报告
- 2024至2030年中国无金属光缆数据监测研究报告
- 2024年高考数学 直线与圆(解析版)
- 临时入场人员安全告知书
- 抖音直播知识培训考试题库(含答案)
- 2024年广东省广州市荔湾区中考一模英语试题(无答案)
- MOOC 数学文化十讲-南开大学 中国大学慕课答案
- (高清版)WST 347-2024 血细胞分析校准指南
- 新生儿咽下综合征护理查房
- 2024年深圳市机场集团有限公司招聘笔试参考题库附带答案详解
- EPC项目采购阶段质量保证措施
- 设备安装调试服务协议书
- 2021年度企业所得税汇算清缴之《贷款损失准备金及纳税调整明细表》填报详解
评论
0/150
提交评论