版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为平方米,宽为米,则这块空地的长为()A.米 B.米C.米 D.米3.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是()A.10尺 B.11尺 C.12尺 D.13尺4.如图,中,,分别是,的平分线,,则等于()A. B. C. D.5.2的平方根为()A.4 B.±4 C. D.±6.九年级(1)班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x千米/时,根据题意列方程得()A. B. C. D.7.如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64° B.42° C.32° D.26°8.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E9.如图,∠ACB=900,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm10.下列运算错误的是()A.. B.. C.. D..二、填空题(每小题3分,共24分)11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.阅读理解:对于任意正整数,,∵,∴,∴,只有当时,等号成立;结论:在(、均为正实数)中,只有当时,有最小值.若,有最小值为__________.13.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.14.已知a+b=5,ab=3,=_____.15.在平面直角坐标系中,已知两点的坐标分别为,若点为轴上一点,且最小,则点的坐标为__________.16.已知函数与的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是____.17.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.18.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______三、解答题(共66分)19.(10分)如图,在中,∠.(1)尺规作图:作的平分线交于点;(不写作法,保留作图痕迹)(2)已知,求的度数.20.(6分)因式分解:m1-1m1n+m1n1.21.(6分)已知:∠1=∠2,∠3=∠1.求证:AC=AD22.(8分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.23.(8分)计算题(1)计算:(2)先化简,再求值:,其中.24.(8分)先化简再求值:,再从0,-1,2中选一个数作为的值代入求值.25.(10分)先化简,再求值,其中x=1.26.(10分)(1)计算:;(2)计算:;(3)分解因式:;(4)解分式方程:.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解:点(﹣2,4)关于x轴的对称点为;(﹣2,﹣4),故(﹣2,﹣4)在第三象限.故选C.考点:关于x轴、y轴对称的点的坐标.2、A【分析】利用长方形的长=面积÷宽,即可求得.【详解】解:∵长方形的面积为平方米,宽为米,∴长方形的长=÷=3a+2.故选A.【点睛】本题考查了整式的乘除,涉及到长方形的面积计算,难度不大.3、D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:,解得:x=12,所以芦苇的长度=x+1=12+1=13(尺),故选:D.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4、B【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.【详解】解:∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=180°-50°=130°,
∵BO,CO分别是∠ABC,∠ACB的平分线,,∴∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
故选:B.【点睛】本题考查角平分线的有关计算,三角形内角和定理.本题中是将∠OBC+∠OCB看成一个整体求得的,掌握整体思想是解决此题的关键.5、D【分析】利用平方根的定义求解即可.【详解】解:∵2的平方根是±.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.6、C【分析】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,根据题意可得走过150千米,快车比慢车少用小时,列方程即可.【详解】设慢车的速度为x千米/小时,则快车的速度为1.2x千米/小时,
根据题意可得:.
故选C.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列方程.7、C【分析】根据直角三角形的性质可求∠B的度数,再根据等腰三角形的性质可求∠BCD的度数,从而可求出∠ACD的度数.【详解】解:∵在△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵BC=BD,∴∠BCD=(180°﹣64°)÷2=58°,∴∠ACD=90°﹣58°=32°.故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,关键是求出∠BCD的度数.8、C【分析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得∠B=∠D,因为,若≌,则还需要补充的条件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形判定定理.9、B【详解】解:∵BE⊥CE,AD⊥CE,∴∠BCE=∠CAD,在△ACD和△CBE中,∴△ACD≌△CBE(AAS),∴AD=CE=2.5cm,BE=CD,∵CD=CE−DE=2.5−1.7=0.8cm,∴BE=0.8cm.故选B.10、D【分析】根据及整式的除法法则及零指数幂与负指数幂计算.【详解】解:A选项,A正确;B选项,B正确;C选项,C正确;D选项,D错误.故选:D【点睛】本题综合考查了整式乘法的相关运算,熟练掌握整式的除法运算及零指数幂与负指数幂的计算是解题的关键.即.二、填空题(每小题3分,共24分)11、十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12、1【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为1,故答案为:1.【点睛】准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.13、【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.【详解】∵∠ACB=,CE是AB边上的中线,∴EA=EC=EB,又∵∠B=,∴∠ACE=∠A=,∵,∴∠DCB=.故.故填:.【点睛】本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.14、.【解析】将a+b=5、ab=3代入原式=,计算可得.【详解】当a+b=5、ab=3时,原式====.故答案为.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.15、【解析】可过点A作关于x轴的对称点A′,连接A′B与轴的交点即为所求.【详解】如图,作点A作关于x轴的对称点A′,连接A′B与x轴的交于点M,点M即为所求.∵点B的坐标(3,2)点A′的坐标(-1,-1),∴直线BA′的解析式为y=x-,令y=0,得到x=,∴点M(,0),故答案为:(,0).【点睛】此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.16、(-1,-2)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【详解】∵函数与的图像都是中心对称图形,∴函数与的图像的一个交点坐标是(1,2)关于原点对称的点是(-1,-2),∴它们的图像的另一个交点的坐标是(-1,-2).故答案是:(-1,-2).【点睛】本题主要考查了反比例函数图象的中心对称性.关于原点对称的两个点的横、纵坐标分别互为相反数.17、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).18、2【解析】试题解析:设第三边为a,根据三角形的三边关系知,2-1<a<2+1.即1<a<6,由周长为偶数,则a为2.三、解答题(共66分)19、(1)见解析;(2)30°【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB于H、F,再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,再画射线AM交CB于D;
(2)先根据角平分线定义和等腰三角形的性质得:∠B=∠BAD=∠CAD,则∠B=30°.【详解】解:(1)如图所示:AD即为所求;(2)∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD=BD,∴∠B=∠BAD,∴∠B=∠BAD=∠CAD,∵∠C=90°,∴∠B=30°.【点睛】此题主要考查了角平分线的基本作图,以及等腰三角形的性质和三角形的内角和,熟练掌握角平分线的基本作图是关键.20、【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21、见解析【分析】由∠3=∠1可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【详解】证明:∵∠3=∠1,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,证明△ABC≌△ABD是解本题的关键.22、(1)m+n;m–n;(2)(m−n)2=(m+n)2–4mn,理由见解析.【解析】分析:(1)观察图形很容易得出图b中大正方形的边长和阴影部分小正方形的边长;(2)观察图形可知大正方形的面积(m+n)2,减去阴影部分的正方形的面积(m−n)2等于四块小长方形的面积4mn,即(m−n)2=(m+n)2–4mn;详解:(1)m+n;m−n(2)解:(m−n)2=(m+n)2–4mn理由如下:右边=(m+n)2−4mn=m2+2mn+n2−4mn=m2−2mn+n2=(m−n)2=左边,所以结论成立.点睛:本题考查了完全平方公式的几何应用,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起.要学会观察.23、(1);(2),.【分析】(1)根据负指数幂的性质、零指数幂的性质和各个法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】(1)原式(2)原式当时,原式.【点睛】此题考查的是实数的混合运算和分式的化简求值题,掌握负指数幂的性质、零指数幂的性质和分式的各个运算法则是解决此题的关键.24、,当时,原式=1【分析】先通分去括号,因式分解,变除为乘,约分得最简分式,然后确定不能取的数值,可取的值代入运算即可.【详解】解:∵∴当时,原式=.【点睛】本题考查了分式的化简求值,熟知相关运算是解题的关键.25、;.【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】解:原式=,当x=1时,原式=.【点睛】本题考查的知识点是分式的混合运算——化简求值,熟练掌握分式的运算顺序以及运算法则是解此题的关键.26、(1);(1);(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色环保厂房改造合同协议3篇
- 专属担保义务拓展协议样本版B版
- 2025年度拆除工程安全评估与装修监理合同样本4篇
- 个人住宅装修协议样例一
- 二零二五年度车辆租赁行业信用体系建设合同3篇
- 2025年度假离婚后子女抚养权争夺法律合同3篇
- 专业油漆工程2024年度承包协议版B版
- 上海二手房买卖合同书范本(2024版)
- 2025年度拆迁拆除工程进度款支付协议书4篇
- 2025年度户外活动场地及设施租赁合同范本4篇
- 大数据管理与考核制度大全
- 大学面试后感谢信
- 2022届上海高考语文调研试测卷详解(有《畏斋记》“《江表传》曰…”译文)
- SBT11229-2021互联网旧货交易平台建设和管理规范
- 如何打造顶尖理财顾问团队
- 土壤农化分析课件
- 小区大型团购活动策划
- NEC(新生儿坏死性小肠结肠炎)92273
- 2023年租赁风控主管年度总结及下一年展望
- 开关插座必看的七个安全隐患范文
- 高分子成型加工课件
评论
0/150
提交评论