




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点的坐标可表示为(1,2,5),点的坐标可表示为(4,1,3),按此方法,则点的坐标可表示为()A. B. C. D.2.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点D,△ABD的周长为16cm,AC为5cm,则△ABC的周长为()A.24cm B.21cm C.20cm D.无法确定3.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.4.已知,且,则的值为()A.2 B.4 C.6 D.85.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是(
)A.6
B.7
C.8
D.96.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=-cx-a的图象可能是()A. B. C. D.7.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短 B.垂线段最短C.两直线平行,内错角相等 D.三角形具有稳定性8.如果多项式的一个因式是,那么另一个因式是()A. B. C. D.9.图1中,每个小正方形的边长为1,的三边a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<a<b D.c<b<a10.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7二、填空题(每小题3分,共24分)11.直线与轴的交点坐标是(,),则直线与坐标轴围成的三角形面积是_______.12.使有意义的x的取值范围为______.13.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.14.如图,在正方形网格中,∠1+∠2+∠3=_____________15.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=________.16.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.17.已知是完全平方式,则__________.18.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,,,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是__________.三、解答题(共66分)19.(10分)计算:=________.20.(6分)已知求的值;已知,求的值;已知,求的值.21.(6分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:;B组:;C组:;D组:.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若A组取,B组取,C组取,D组取,计算这300名学生平均每天在校体育活动的时间;(保留两位小数)(3)若该辖区约有20000名中学生,请你估计其中达到国家体育活动时间的人数.22.(8分)如图,在中,的平分线与的外角平分线相交于点,分别交直线、于点、.(1)如图1,当点在边上时,求证:;(2)如图2,当点在延长线上时,直接写出、、之间的等量关系.(不必证明)23.(8分)某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n(单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.24.(8分)解一元二次方程.(1).(2).25.(10分)某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A1083320B592860Cab2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.26.(10分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】分别找到点C与过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号,然后从水平方向开始,顺时针方向即可写出C的坐标.【详解】过点C且平行(或重合)于原三角形三条边的直线与三边交点的序号分别是2,4,2∵水平方向开始,按顺时针方向∴点C的坐标为故选:C.【点睛】本题主要考查在新坐标系下确定点的坐标,读懂题意是解题的关键.2、B【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,
∴AD=DC,
∵△ABD的周长=AB+BD+AD=16,
∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=1.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.3、D【解析】根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.4、D【分析】通过完全平方公式得出的值,然后根据分式的基本性质约分即可.【详解】∵故选:D.【点睛】本题主要考查分式的化简求值,掌握完全平方公式和分式的基本性质是解题的关键.5、C【分析】根据多边形的内角和公式(n-2)•110°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•110°=3×360°,解得n=1.【点睛】熟练掌握多边形内角和公式和外角和是解决本题的关键,难度较小.6、B【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限即可.【详解】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∴-c<0,-a>0,∴函数y=-cx-a的图象经过第一、二、四象限.故选B.【点睛】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.7、D【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.【点睛】此题考查三角形的性质,关键是根据三角形的稳定性解答.8、A【分析】多项式先提取公因式,提取公因式后剩下的因式即为所求.【详解】解:,故另一个因式为,故选:A.【点睛】此题考查了因式分解提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.9、C【解析】通过小正方形网格,可以看出AB=4,AC、BC分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC、BC,然后比较三边的大小即可.解答:解:∵AC==5=,BC=AB=4=,∴b>a>c,即c<a<b.故选C.10、C【分析】直接利用一次函数平移规律“上加下减”即可得到答案.【详解】∵将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3+2,即y=﹣2x+1.故选:C.【点睛】本题主要一次函数平移规律,掌握一次函数平移规律“左加右减,上加下减”是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据直线与y轴交点坐标可求出b值,再求出与x轴交点坐标,从而计算三角形面积.【详解】解:∵与y轴交于(0,2),将(0,2)代入,得:b=2,∴直线表达式为:y=2x+2,令y=0,则x=-1,∴直线与x轴交点为(-1,0),令A(0,2),B(-1,0),∴△ABO的面积=×2×1=1,故答案为:1.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.12、x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.13、1.【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.14、135°【分析】先证明△ABC≌△AEF,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠BAC=∠4,∵∠BAC=∠1,
∴∠4=∠1,
∵∠3+∠4=90°,
∴∠1+∠3=90°,
∵AG=DG,∠AGD=90°,
∴∠2=45°,
∴∠1+∠2+∠3=135°,
故答案为:135°【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.15、1【解析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.解:在Rt△ABC中,AB==5,
∵AD=13,BD=12,
∴AB2+BD2=AD2,即可判断△ABD为直角三角形,
阴影部分的面积=AB×BD-BC×AC=30-6=1.
答:阴影部分的面积=1.
故答案为1.“点睛”此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD为直角三角形.16、1.1【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=10°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可得:AD=AB,∵∠B=10°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为1.1.【点睛】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.17、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.18、【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【详解】依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=62+22=40所以x=所以“数学风车”的周长是:(+3)×4=.【点睛】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.三、解答题(共66分)19、2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果.【详解】解:(-2)2020)2019=22020)2019=222019)2019=2)2019=2=2【点睛】此题考察整式乘法公式的运用,准确变形是解题的关键.20、(1);(2);(3).【分析】(1)根据同底数幂的乘法法则,将转换成,即可求出的值;(2)根据同底数幂的乘法法则,将转换成,即可求出的值;(3)利用完全平方公式将转换成,再代入求解即可.【详解】(1)∵∴解得(2)∵∴解得(3)将代入原式中原式.【点睛】本题考查了同底数幂和代数式的运算,掌握同底数幂的运算法则、解代数式的方法是解题的关键.21、(1)C;C;(2)1.17小时;(3)12000人.【分析】(1)根据中位数和众数的概念,分析可得答案;(2)根据算术平均数的求法计算即可;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;根据众数的概念,众数是出现次数最多的,故调查数据的众数落在C组;(2)(小时)(3)达到国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有20000×60%=12000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数和众数的概念、求算术平均数、用样本估计总体.22、(1)证明见解析;(2).【分析】(1)由BD平分∠ABC,得到∠ABD=∠DBC,根据平行线的性质得到∠EDB=∠DBC,由等腰三角形的判定定理得到BE=ED;同理可证:CF=DF,由线段的和差和等量代换即可得到结论;(2)同(1)可得,,从而可得出结论.【详解】(1)证明:,,又平分,,,.同理可证:,;(2)解:同(1)可得,,,∴.即、、之间的等量关系为:.【点睛】本题考查了等腰三角形的判定和性质,平行线的判定和性质,熟练掌握等腰三角形的判定和性质是解题的关键.23、(1)t=(2)原计划4天完成【分析】(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.【详解】解:(1)设需要的天数为t,∵每天运量×天数=总运量,∴nt=4000,∴t=;(2)设原计划x天完成,根据题意得:解得:x=4经检验:x=4是原方程的根.答:原计划4天完成.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24、(1),.(2),.【分析】(1)先移项,然后用因式分解法求解即可;(2)用因式分解法求解即可.【详解】解析:(1),.(2),.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年诚信教育贷款知识竞赛试题及答案
- 第一单元评估测试卷(含答案) 2025-2026学年语文部编版九年级上册
- 2025年房屋拆迁补偿合同协议书(12版)
- 2025版酒店资产评估与转让合同规范文本
- 二零二五版海洋资源勘探与开发劳动合同
- 二零二五年度个人电工设备维护与安装合同
- 二零二五年度新能源汽车充电设施建设安装服务合同模板
- 2025年星级酒店餐饮用品采购与售后服务合同
- 2025版电竞馆租赁合同及赛事服务协议
- 二零二五年度电梯设备销售与安全监管合同
- T-GXAS 768-2024 尿中反-反式粘糠酸的测定 液相色谱-质谱联用法
- 四川省通信产业服务有限公司笔试题库
- 患者医疗信息管理制度
- 罪犯个别教育转化案例、罪犯X某的矫治个案、教育改造案例2023(共5篇)
- 石漠化综合治理人工造林设计方案
- 2024年物联网安装调试员职业技能竞赛考试题库500题(含答案)
- 《建筑施工技术》课件-砌筑工程施工
- 图文制作服务 投标方案(技术方案)
- 高中英语外研版 单词表 必修3
- 第十四届陕西省气象行业职业技能(县级综合气象业务)竞赛理论试题库-下(多选、判断题)
- 2023年新疆克州高校毕业生“三支一扶”计划招募考试真题
评论
0/150
提交评论