




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A. B. C. D.2.已知不等式组的解集为,则的值为()A.-1 B.2019 C.1 D.-20193.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为4.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.5.只用下列图形不能进行平面镶嵌的是()A.正六角形 B.正五边形 C.正四边形 D.正三边形6.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对7.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,8.下列命题的逆命题为假命题的是()A.有两角互余的三角形是直角三角形 B.如果,那么直线经过一、三象限C.如果,那么点在坐标轴上 D.三边分别相等的两个三角形全等9.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1910.“绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在2019年3月12日植树节前植树2000棵,在植树400棵后,为了加快任务进程,采用新设备,植树效率比原来提升了25%,结果比原计划提前5天完成所有计划,设原计划每天植树x棵,依题意可列方程()A.B.C.D.二、填空题(每小题3分,共24分)11.已知P(a,b),且ab<0,则点P在第_________象限.12.要使代数式有意义,则x的取值范围是_______.13.如图,在中,,点为边上的一点,,,交于点,交于点.若,图中阴影部分的面积为4,,则的周长为______.14.如图,已知一次函数和的图象交于点,则二元一次方程组的解是_______.15.分式有意义时,x的取值范围是_____.16.如果关于的方程有增根,则_______________.17.若有(x﹣3)0=1成立,则x应满足条件_____.18.若,那么的化简结果是.三、解答题(共66分)19.(10分)图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
;(2)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(3)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.20.(6分)先化简再求值:若,且,求的值.21.(6分)如图,点B,C,D在同一条直线上,,是等边三角形,若,,求的度数;求AC长.22.(8分)(1)运用乘法公式计算:.(2)解分式方程:.23.(8分)如图,一块四边形的土地,其中,,,,,求这块土地的面积.24.(8分)已知,如图,折叠长方形(四个角都是直角,对边相等)的一边使点落在边的点处,已知,,求的长.25.(10分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.26.(10分)计算:14+(3.14)0+÷
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据轴对称图形的概念判断即可.【详解】解:A、B、D中的图形不是轴对称图形,
C中的图形是轴对称图形,
故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2、A【分析】根据不等式组的解集即可得出关于a、b的方程组,解方程组即可得出a、b值,将其代入计算可得.【详解】解不等式x+a>1,得:x>1﹣a,解不等式2x+b<2,得:x<,所以不等式组的解集为1﹣a<x<.∵不等式组的解集为﹣2<x<3,∴1﹣a=﹣2,=3,解得:a=3,b=﹣4,∴=﹣1.故选:A.【点睛】本题考查了解一元一次不等式组,解题的关键是求出a、b值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.3、A【解析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【点睛】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.5、B【分析】根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.【详解】解:A、正六边形的每个内角是120°,能整除360°,能密铺;B、正五边形每个内角是108°,不能整除360°,不能密铺;C、正四边形的每个内角是90°,能整除360°,能密铺;D、正三边形的每个内角是60°,能整除360°,能密铺.故选:B.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.6、A【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.7、B【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.8、C【分析】先逐一得出每个命题的逆命题,然后再判断真假即可.【详解】A的逆命题是直角三角形有两角互余,是真命题,故该选项不符合题意;B的逆命题是如果直线经过一、三象限,那么,是真命题,故该选项不符合题意;C的逆命题是如果点在坐标轴上,那么,是假命题,故该选项符合题意;D的逆命题是如果两个三角形全等,那么这两个三角形的三边相等,是真命题,故该选项不符合题意;故选:C.【点睛】本题主要考查逆命题和真假命题,会写出命题的逆命题是解题的关键.9、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.10、D【分析】根据题目中的数量关系,可以列出相应的分式方程,从而可以解答本题.【详解】解:根据“结果比原计划提前5天完成所有计划”可得:=5,故选:D.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.二、填空题(每小题3分,共24分)11、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【点睛】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.12、x≥-1且x≠1【分析】先根据二次根式有意义,分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵使代数式有意义,∴解得x≥-1且x≠1.故答案为:x≥-1且x≠1.【点睛】本题考查的是代数式有意义的条件,熟知二次根式中的被开方数是非负数,分母不为零是解答此题的关键.13、【分析】设,,结合题意得,,再根据交于点,交于点,从而得到;通过证明;得,从而得四边形面积;根据勾股定理,得,即可完成求解.【详解】设,∵,∴,∵交于点,交于点∴∴∴∵∴∴∴四边形面积∵阴影面积∴∴∵∴∴∵∴∴的周长为:故答案为:.【点睛】本题考查了全等三角形、勾股定理、算术平方根的知识;解题的关键是熟练掌握全等三角形、勾股定理、算术平方根的性质,从而完成求解.14、【分析】是图像上移2个单位,是图像上移2个单位,所以交点P也上移两个单位,据此即可求得答案.【详解】解:∵是图像上移2个单位得到,是图像上移2个单位得到,∴交点P(-4,-2),也上移两个单位得到P'(-4,0),∴的解为,即方程组的解为,故答案为:.【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.15、x>1.【解析】试题解析:根据题意得:解得:故答案为点睛:二次根式有意义的条件:被开方数大于等于零.分式有意义的条件:分母不为零.16、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x−1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘x−1得mx+1-x+1=0,∵方程有增根,∴最简公分母x−1=0,即增根是x=1,把x=1代入整式方程,得m=−1.故答案为:−1.【点睛】本题考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17、x≠1【分析】便可推导.【详解】解:根据题意得:x﹣1≠0,解得:x≠1.故答案是:x≠1.【点睛】掌握0次方成立的意义为本题的关键.18、【分析】直接利用二次根式的性质化简求出答案.【详解】∵x<2,∴=2﹣x.故答案为:2﹣x.【点睛】本题考查了二次根式的性质与化简,正确把握二次根式的性质是解答本题的关键.三、解答题(共66分)19、(1)∠A+∠D=∠C+∠B;(2)∠P=45°;(3)2∠P=∠D+∠B.【解析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义可得∠DAP=∠PAB,∠DCP=∠PCB,将①+②整理可得2∠P=∠D+∠B,进而求得∠P的度数;(3)同(2)根据“8字形”中的角的规律和角平分线的定义,即可得出2∠P=∠D+∠B.【详解】解(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;(2)由(1)得,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B=50°+40°,∴∠P=45°;
(3)关系:2∠P=∠D+∠B;证明过程同(2).20、10【分析】将原式化简得到最简结果,再将x=10+y代入即可.【详解】解:原式==∵,∴,代入得:原式=10.【点睛】本题考查了分式的化简求值,已知字母的关系式求分式的值,注意题中整体思想的运用.21、(1)60°;(2)3.【解析】由等边三角形的性质可得,,,可证≌,可得,可得的度数;由全等三角形的性质和等边三角形的性质可求AC的长.【详解】解:,是等边三角形
,,,
,且,,
≌
≌
,
,【点睛】考查了全等三角形判定和性质,等边三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.22、(1);(2)无解【分析】(1)先添括号化为平方差公式的形式,再根据平方差公式计算,最后根据完全平方公式计算即可;(2)先去分母化为整式方程,解整式方程,再检验得最简公分母值为0,从而得到分式方程无解.【详解】解:;解:.方程两边同时乘以,得.解得.检验:当时,,因此不是原分式方程的解,所以,原分式方程无解.【检验】本题考查了乘法公式和解分式方程,熟练掌握乘法公式和解分式方程的一般步骤是解题的关键.23、36cm2【分析】根据勾股定理逆定理证BD⊥BC,再根据四边形ABCD的面积=△ABD的面积+△BCD的面积.【详解】解:∵AD=3cm,AB=4cm,∠BAD=90°,
∴BD=5cm.
又∵BC=12cm,CD=13cm,
∴BD2+BC2=CD2.
∴BD⊥BC.
∴四边形ABCD的面积=△ABD的面积+△BCD的面积==6+30=36(cm2).
故这块土地的面积是36m2.【点睛】考核知识点:勾股定理逆定理应用.推出直角三角形,再求三角形面积是关键.24、【分析】设,在△CEF中用勾股定理求得EC的长度.【详解】∴由勾股定理得,.设,则.∴由勾股定理得∴解得∴EC的长为1.【点睛】本题考查了勾股定理的应用,用代数式表示△CEF中各边的等量关系式,求出EC的长.25、(1)AB=AP
,AB⊥AP
;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【详解】解:(1)∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=(180°-∠ACB)=45°,
∵,∠EFP=180°-∠ACB=90°,∴△EFP为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承包地转包合同协议书
- 烧烤店合同解除协议书
- 考科目二协议书
- 退出入股协议书
- 费用资助协议书
- 药品上市协议书
- 土地置换及建设协议书
- 茶叶代卖协议书
- 纸厂销毁协议书
- 未施工合同解除协议书
- 学校食堂“三同三公开”制度实施方案
- 危化品驾驶员押运员安全培训
- 2025年福建福州地铁集团有限公司招聘笔试参考题库含答案解析
- 肝硬化行TIPS术后整体护理查房
- 人工智能在新闻媒体领域的应用
- 【MOOC】儒家伦理-南京大学 中国大学慕课MOOC答案
- 银保部三年规划
- 2024治安调解协议书样式
- 零工市场(驿站)运营管理 投标方案(技术方案)
- 小学二年级数学找规律练习题及答案
- 智研咨询重磅发布:2024年中国航运行业供需态势、市场现状及发展前景预测报告
评论
0/150
提交评论