版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2 B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2 D.(2x﹣y)(2x+y)=2x2﹣y22.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6C.2m+3 D.2m+63.已知,那么=()A.6 B.7 C.9 D.104.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如果,且,那么点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知则a、b、c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.下列分式中,不是最简分式的是()A. B.C. D.8.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处9.七年级一班同学根据兴趣分成五个小组,并制成了如图所示的条形统计图,若制成扇形统计图,第1小组对应扇形圆心角的度数为()A. B. C. D.10.用计算器依次按键,得到的结果最接近的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为_________.12.如图,在中,、的垂直平分线、相交于点,若等于76°,则____________.13.已知:,,那么________________.14.一组数据为:5,﹣2,3,x,3,﹣2,若每个数据都是这组数据的众数,则这组数据的中位数是_____.15.化为最简二次根式__________.16.如果正比例函数的图像经过点,,那么y随x的增大而______.17.分解因式____________.18.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=AC,D、E分别是AB、BC的中点,EF⊥AC,垂足F;(1)求证:AD=DE;(2)求证:DE⊥EF.20.(6分)如图,在中,,D在边AC上,且.如图1,填空______,______如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.求证:是等腰三角形;试写出线段AN、CE、CD之间的数量关系,并加以证明.21.(6分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:(1)当=68和=-4时,的值;(2)当=10时,的值.22.(8分)如图,在四边形ABCD中,.(1)度;(2)若的角平分线与的角平分线相交于点E,求的度数.23.(8分)已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.24.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于E,F两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(10分)为了解某校八年级暑期参加义工活动的时间,某研究小组随机采访了该校八年级的20位同学,得到这20位同学暑假参加义工活动的天数的统计如下:天数(天)02356810人数1248221(1)这20位同学暑期参加义工活动的天数的中位数是______天,众数是_______天,极差是_______天;(2)若小明同学把天数中的数据“8”看成了“7”,那么中位数、众数、方差,极差四个指标中受影响的是___;(3)若该校有500名八年级学生,试用这20个同学的样本数据去估计该校八年级学生暑期参加义工活动的总天数.26.(10分)如图,在中,平分,于点,点是的中点.(1)如图1,的延长线与边相交于点,求证:;(2)如图2,中,,求线段的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据完全平方公式和平方差公式求出每个式子的结果,再判断即可.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选C.【点睛】本题考查了完全平方公式和平方差公式的应用,注意:完全平方公式:,平方差公式:(a+b)(a-b)=a-b.2、C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.3、B【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理后代入原式计算即可求出值.【详解】解:∵,∴=2,即a+b=2ab,则原式===7,故选:B.【点睛】本题考查了分式加法的运算法则,整体代换思想的应用,掌握整体代换思想是解题的关键.4、D【解析】根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=3x+1的图象经过第一、二、三象限,此题得解.【详解】解:将(-2,0),(-1,3)代入y=kx+b,得:,
解得:,
∴一次函数的解析式为y=3x+1.
∵3>0,1>0,
∴一次函数y=3x+1的图象经过第一、二、三象限.
故选:D.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.5、B【分析】根据,且可确定出a、b的正负情况,再判断出点的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵,且,∴∴点在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【解析】试题解析:a=2-2=,b=(22-1)0=1,c=(-1)3=-1,1>>−1,即:b>a>c.故选B.7、B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子,分母分解因式,观察互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而约分.【详解】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解:A、是最简分式,不符合题意;B、不是最简分式,符合题意;C、是最简分式,不符合题意;D、是最简分式,不符合题意;故选:B.【点睛】本题主要考查了分式化简中最简分式的判断.8、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.9、C【分析】根据扇形圆心角的度数为本组人数与总人数之比,再乘以360°进行计算即可.【详解】由题意可得,第1小组对应扇形圆心角的度数为,故选C.【点睛】本题考查条形图和扇形图的相关计算,解题的关键是理解扇形圆心角与条形图中人数的关系.10、C【分析】利用计算器得到的近似值即可得到答案.【详解】解:,与最接近的是2.1.故选:C.【点睛】本题主要考查计算器的使用,解题的关键是掌握计算器上常用的按键的功能和使用顺序.二、填空题(每小题3分,共24分)11、(-3,-2).【解析】试题解析:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).考点:1.关于x轴、y轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.12、14°【分析】连接OA,根据垂直平分线的性质可得OA=OB,OA=OC,然后根据等边对等角和等量代换可得∠OAB=∠OBA,∠OAC=∠OCA,OB=OC,从而得出∠OBC=∠OCB,∠OBA+∠OCA=76°,然后根据三角形的内角和列出方程即可求出.【详解】解:连接OA∵、的垂直平分线、相交于点,∴OA=OB,OA=OC∴∠OAB=∠OBA,∠OAC=∠OCA,OB=OC∴∠OBC=∠OCB∵=76°∴∠OAB+∠OAC=76°∴∠OBA+∠OCA=76°∵∠BAC+∠ABC+∠ACB=180°∴76°+∠OBA+∠OBC+∠OCA+OCB=180°∴76°+76°+2∠OBC=180°解得:∠OBC=14°故答案为:14°.【点睛】此题考查的是垂直平分线的性质和等腰三角形的性质,掌握垂直平分线的性质和等边对等角是解决此题的关键.13、10【解析】∵(a+b)2=72=49,∴a2-ab+b2=(a+b)2-3ab=49-39=10,故答案为10.14、1【分析】由于每个数据都是这组数据的众数,根据众数定义可知m=5,再根据中位数的计算方法进行计算即可.【详解】解:∵-2出现2次,1出现2次且每个数据都是这组数据的众数∴x=5,∴这组数据从小到大排列为:-2,-2,1,1,5,5,∴中位数==1.故答案为:1.【点睛】本题考查了众数、中位数,解题的关键是掌握众数、中位数的计算方法.15、【解析】根据二次根式的性质化简即可.【详解】,故答案为:.【点睛】本题考查的是最简二次根式,掌握二次根式的性质是解题的关键.16、减小【分析】求出k的值,根据k的符号确定正比例函数的增减性.【详解】解:∵正比例函数的图像经过点,,∴-2k=6,∴k=-3,∴y随x的增大而减小.故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k的值是解题关键.17、【分析】先提取公因式,再利用平方差公式即可求解.【详解】故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.18、47°【分析】首先过点C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用两直线平行,同位角相等与余角的性质,即可求得∠β的度数.【详解】解:如图,过点C作CH∥DE交AB于H根据题意得:∠ACB=90°,DE∥FG,∴CH∥DE∥FG,∴∠BCH=∠α=43°,∴∠HCA=90°-∠BCH=47°,∴∠β=∠HCA=47°.【点睛】本题考查平行线的性质,难度不大,解题的关键是准确作出辅助线,掌握两直线平行,同位角相等定理的应用.三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)根据三角形的中位线定理可得DE=AC,再由已知条件即可证得结论;(2)根据三角形的中位线定理可得DE∥AC,再利用平行线的性质即得结论.【详解】证明:(1)∵D、E分别是AB、BC的中点,∴AD=AB,DE=AC,∵AB=AC,∴AD=DE;(2)∵D、E分别是AB、BC的中点,∴DE∥AC,∵EF⊥AC,∴DE⊥EF.【点睛】本题主要考查了三角形的中位线定理和平行线的性质,属于基础题型,熟练掌握三角形的中位线定理是解题关键.20、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.【分析】(1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;(2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.【详解】解:(1)∵BD=BC,∴∠BDC=∠C,∵AB=AC,∴∠ABC=∠C,∴∠A=∠DBC,∵AD=BD,∴∠A=∠DBA,∴∠A=∠DBA=∠DBC=∠ABC=∠C,∵∠A+∠ABC+∠C=5∠A=180°,∴∠A=36°,∠C=72°;故答案为36,72;(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,∴∠ABD=∠CBD=36°,∵BH⊥EN,∴∠BHN=∠EHB=90°,在△BNH与△BEH中,,∴△BNH≌△BEH(ASA),∴BN=BE,∴△BNE是等腰三角形;②CD=AN+CE,理由:由①知,BN=BE,∵AB=AC,∴AN=AB﹣BN=AC﹣BE,∵CE=BE﹣BC,∴AN+CE=AC﹣BC,∵CD=AC﹣AD=AC﹣BD=AC﹣BC,∴CD=AN+CE.【点睛】本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.21、(1)当时,=20;当时,=;(2)当时,.【分析】(1)将f=68和f=-4分别代入关系式进行求解即可;(2)把c=10代入关系式进行求解即可.【详解】(1)当时,=20;当时,=;(2)当时,,解得.22、(1);(2)【分析】(1)根据四边形内角和为360°即可得出答案;(2)先根据角平分线的定义求出的度数,然后利用三角形内角和定理即可得出答案.【详解】(1);(2)∵AE平分,BE平分【点睛】本题主要考查四边形内角和及三角形内角和定理,掌握三角形内角和定理及四边形内角和为360°是解题的关键.23、见解析【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,
∴AD=AB,AE=AC,
∴∠DAE=∠BAD=∠CAE=60°
∴∠BAE=∠DAC=120°,
在△BAE和△DAC中
AD=AB,∠BAE=∠DAC,AE=AC,
∴△BAE≌△DAC.
∴∠1=∠2
在△BAG和△DAF中
∠1=∠2,AB=AD,∠BAD=∠DAE,
∴△BAG≌△DAF,
∴AG=AF,又∠DAE=60°,
∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)见解析;(2)证明见解析.【分析】(1)利用基本作图(作已知角的角平分线)作BF平分∠ABC即可;(2)分析题意,首先根据角平分线的作法作出∠ABC的角平分线,并标注点E、F即可;根据直角三角形的性质,可得出∠BED+∠EBD=90°,∠AFE+∠ABF=90°,进而得出∠BED=∠AFE;接下来根据对顶角相等,可得出∠AEF=∠AFE,据此可得到结论.【详解】解:(1)如图所示,射线BF即为所求(2)证明:∵AD⊥BC∴∠ADB=90°∴∠BED+∠EBD=90°∵∠BAC=90°∴∠AFE+∠ABF=90°∵∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司办公场地租赁的合同范文
- (限制性股票模式)股权激励协议范本
- 车辆经营合作协议书的范文格式
- 机械施工安全责任合同(施工)
- 高校毕业生就业见习单位协议
- 中考物理复习专项单选、填空题组1课件
- 第14课 历史上的疫病与医学成就 课件-高二历史统编版(2019)选择性必修2经济与社会生活
- 11我与社会(原卷版)
- 天津市十二区重点学校高三下学期联考(二)历史
- 工程项目委托管理协议、工程项目管理外包合同
- 机器人社团考试试卷附有答案
- T-CHAS 10-1-4-2022 中国医院质量安全管理 第1-4部分:总则标准通用术语
- 第七章 水利工程管理法规讲解
- 油烟废气处理方案
- 文物保护概论课件
- 艾灸床全身灸的功效课件
- 银行放款工作总结
- 海洋的生态系统与生物多样性
- 山东省普通话水平测试题50套(全套及答案)
- 肝脏瞬时弹性硬度报告
- 十佳班级答辩
评论
0/150
提交评论