高中数学 第2章 统计 2_第1页
高中数学 第2章 统计 2_第2页
高中数学 第2章 统计 2_第3页
高中数学 第2章 统计 2_第4页
高中数学 第2章 统计 2_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2总体分布的估计

入门答辩——辨析问题解疑惑

区新知自解—自读教材找关键

自主学习梳理主干zizhuK.utK.iizhugan

〃入口卷料

某制造商为2013年全运会生产一批直径为40mm的乒乓球,现随机抽样检查20只,

测得每只球的直径(单位:mm,保留两位小数)如下

40.0340.0039.9840.0039.9940.0039.98

40.0139.9839.9940.0039.9939.9540.01

40.0239.9840.0039.9940.0039.96

问题1:上述20个数据中最大值与最小值分别是多少,它们相差多少?

提示:最大值为40.03,最小值为39.95,其差为0.08.

问题2:将上述数据分组统计,分组情况为[39.95,39.97),[39.97,39.99),

[39.99,40.01),[40.01,40.03],求各组个数.

提示:各组数据的个数为2,4,10,4.

问题3:试求出各组数据所占的比例?

提示:分别为0.10,0.20,0.50,0.20.

问题4:能否用一个直观图来表示问题2中各组数据的分布情况?

提示:可以.

〃〃/新知6解'〃//

1.频率分布表

(1)定义:当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我

们把反映总体频率分布的表格称为频率分布表.

(2)绘制的步骤:

①求全距,决定组数和组距,组距=赧全距.

②分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间.

③登记频数,计算频率,列出频率分布表.

2.频率分布直方图

(1)定义:我们用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图.

(2)绘制步骤:

①先制作频率分布表.

②建立直角坐标系:把横轴分成若干段,每一段对应一个组的组即,并标上一些关键点.

③画矩形:在横轴上,以连结相邻两点的线段为底,以纵轴上箭为高作矩形,这样得

一组距----

一系列矩形,就构成了频率分布直方图.

3.频率分布折线图

(1)定义:把频率分布直方图中各相邻的矩形的上底边的中点顺次连结起来,就得到频

率分布折线图.

(2)总体分布密度曲线:

频率折线图的优点是它反映了数据的变化趋势,如果将样本容量取得足够大,分组的组

距取得足够小,则相应的频率折线图将趋于一条光滑曲线,称这条光滑曲线为总体分布的密

度曲线.

[归纳.升华.领悟1----------------------------------------->

1.在频率分布表中,除最后一个区间是闭区间,其他区间均为左闭右开区间,这样做

的目的是为了不重不漏,避免丢失样本数据.

2.在频率分布直方图中,各个小矩形的面积之和为1.

3.频率分布直方图直观地显示了数据分布信息,从而为分析估计总体提供了依据.

4.频率分布折线图反映了数据的变化趋势,可用来对数据进行估计和预测.

突破考点总结规律

动II

高考为标提炼技法

把握热点考向贵在学有所悟

考点1频率分布直方图的画法

[例1]从某校参加2016年全国高中数学联赛预赛的600名同学中,等可能抽取若干

名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.

(1)根据表中己知数据,依次写出在①、②、③处的数值;

(2)补全在区间[70,140]上的频率分布直方图;

(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加

决赛?

分组频数频率

[70,80)0.08

[80,90)③

[90,100)0.36

2

[100,110)160.32

[110,120)0.08

[120,130)2②

[130,140]0.02

合计①

频率

0.040组距

0.036

0.032

0.028

0.024

0.020

0.016

0.012

0.008H

0.004分数

708090100110120130140

[思路点拨]根据频率分布表作出频率分布直方图.

[精解详析]

(2)如图:

(3)成绩不低于110分的同学能参加决赛的频率为

0.08+0.04+0.02=0.14,所以估计该校能参加决赛的人数大约为600X0.14=84.

[一点通]1.在列频率分布表时,全距、组距、组数有如下关系:

⑴若全能距为整数,则全端距=组数•

(2)若全蠡距|不为整数,则全湍距的整数部分+1=组数.

2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布

规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容

量不超过100,按照数据的多少常分为5〜12组,一般样本容量越大,所分组数越多.

题做条例

1.从全校参加科技知识竞赛的学生试卷中,抽取一个样

本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直

方图(如图),图中从左到右各小组的小长方形的高的比是1:

50.560.570580.590.5100.5分数

3:6:4:2,最右边一组的频数是6.

请结合频率分布直方图提供的信息,解答下列问题:

(1)样本的容量是多少?

(2)列出频率分布表.

解:(1)由于各组的组距相等,所以各组的频率与各小长方形的高成正比且各组频率的

和等于1,那么各组的频率分别为白,七蓝,电专设该样本容量为〃,则2=急所以

1616161616n16

样本容量为〃=48.

(2)由以上得频率分布表如下:

成绩频数频率

1

[50.5,60.5)3而

3

[60.5,70.5)9T6

6

[70.5,80.5)1876

4

[80.5,90.5)1276

2

[90.5,100.5)6正

合计481

2.有一容量为200的样本,数据的分组以及各组的频数如下:

[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;

[5,10),41;[10,15),20;[15,20),17.

(1)列出样本的频率分布表;

(2)画出频率分布直方图:

(3)求样本数据不足0的频率.

解:(1)频率分布表如下:

分组频数频率

[—20,—15)70.035

[-15,-10)110.055

[—10,-5)150.075

[-5,0)400.200

4

[0,5)490.245

[5,10)410.205

[10,15)200.100

[15,20)170.085

合计2001.00

⑵频率分布直方图如图所示:

(3)样本数据不足0的频率为7+11„+10

=0.365.

考点2频率分布直方图的应用

[例2](12分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次

数测试,将所得数据整理后,绘制出频率分布直方图(如图所示),第二小组频数为12.

0.036

0.032

0.028

0.024

0.020

0.016

0.012

0.008

0.004

90100110120130140150次数

(1)第二小组的频率是多少?样本容量是多少?

(2)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少?

[思路点拨](1)利用频率等于对应小长方形面积来确定;(2)满足条件的频率之和即为

达标率.

频率

[精解详析](1)由题中可知第二小组[100,110)对应的篇为0.008,而组距为10,

故频率为0.008X10=0.08,分)

设样本容量为为/?,则3=0.08,分)

(2)根据频率分布直方图,次数在110以上共有四组.

估计该校全体高一学生的达标率为:

1-0.04-0.08=分)

[一点通]1.频率分布直方图的性质:

(1)因为小矩形的面积=组距X频率/组距=频率,所以各小矩形的面积表示相应各组的

频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.

(2)在频率分布直方图中,各小矩形的面积之和等于1.

(3)频数/相应的频率=样本容量.

2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本

在某一范围内的频率,可近似地估计总体在这一范围内的可能性.

3.观察新生婴儿的体重(单位:g),其频率分布直方图如下图所示,则新生婴儿体重在

[2700,3000)内的频率为________.

频率/组距

0.001

240027003000330036003900体欧

频率

解析:由图可知当新生婴儿体重在[2700,3000)内时,疝1=0.001,而组距为300,

所以频率为0.001X300=0.3.

答案:0.3

4.为了了解某校今年准备报考飞行员的学生的体重情况,

将所得的数据整理后,画出了频率分布直方图(如图),已知图

中从左到右的前3个小组的频率之比为1:2:3,第2小组的频

数为12,则报考飞行员的学生人数是.

解析:依题意,设第2小组的频率为2x,则有6x=1—(0.037

+0.013)X5,得2x=0.25,即第2小组的频率为0.25,因此报考飞行员的学生人数是一

U.ZO

=48.

答案:48

5.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地居民

调查了10000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民

平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽

样方法抽出100人做进一步调查,则在[2.5,3](小时)时间段内应抽出的人数是.

6

1.01.52.02.53.03.54.0每天平均看电

视时间/小时

解析:抽出的100人中平均每天看电视的时间在[2.5,3](小时)时间内的频率是

0.5X0.5=0.25,所以这10000人中平均每天看电视的时间在[2.5,3](小时)时间内的人数

是10000X0.25=2500,抽样比是添看=击,

则在[2.5,3](小时)时间段内应抽出的人数是2500X击=25.

答案:25

[方法.规律,小结]'

1.频率分布表和频率分布直方图都是用来描述样本数据情况的,是相同数据的两种不

同的表达方式.

2.频率分布表在数量表示上比较确切,但不够直观、形象,用它来分析数据分布的总

体趋势不太方便,而频率分布直方图能够表示大量数据,非常直观、形象地表明分布的规律,

使我们能够看到在分布表中看不清楚的数据模式.但是直方图会丢失一些信息,如原始数据

不能在图中表示出来.

栏目功能

能I

提速提能,让学生趁热打铁消化所学,

区既练速度又练准度,步步为营步步赢

课下能力提升(十一)

一、填空题

1.如图是容量为100的样本的频率分布直方图,试根据图形中的数据填空.

26101418数据

(1)样本数据在范围[6,10)内的频率为;

(2)样本数据落在范围[10,14)内的频数为.

解析:(1)样本数据在[6,10)内频率为0.08X4=0.32.

(2)在[10,14)内的频数为0.09X4X100=36.

答案:(1)0.32(2)36

2.为了调查某厂工人生产某种产品的能力,随机抽查了20名工人某天生产该产品的数

量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频

率分布直方图如下图,则这20名工人中一天生产该产品数量在[55,75)的人数是.

频率

解析:由题意得,这20名工人中一天生产该产品数量在[55,75)的人数是20X[(0.040

+0,025)义10]=13(人).

答案:案

3.将容量为100的样本数据,按从小到大的顺序分成8个组,如下表:

组号12345678

频数914141312X1310

则第六组的频率为.

15

解析:9+14+14+13+12+A+13+10=100,x=15.—同=0.15.

答案:0.15

4.为提高公众对健康的自我管理能力和科学认识,某调查机构共调查了200人在一天

中的睡眠时间.现将数据整理分组,如下表所示.由于操作不慎,表中力,B,C,〃四处数

据污损,统计员只记得/处的数据比C处的数据大4,由此可知6处的数据为.

分组(睡眠时间)频数频率

[4,5)80.04

[5,6)520.26

[6,7)AB

[7,8)CD

[8,9)200.10

8

[9,10]40.02

合计200I

解析:设力处的数据为x,则。处的数据为x—4,

贝ijx+x-4+8+52+20+4=200,x=60,

则6处数据为黑=0.3.

答案:0.3

5.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方

图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:

(1)[25,30)年龄组对应小矩形的高度为;

(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为一

解析:设[25,30)年龄组对应小矩形的高度为方,则5X901+方+0.07+0.06+0.02)

=1,/?=0.04.志愿者年龄在[25,35)的频率为5X(0.04+0.07)=0.55,故志愿者年龄在

[25,35)的人数约为0.55X800=440.

答案:0.04440

二、解答题

6.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品

净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是aA15

aA12

a0

[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),a。7

a||r口5

l3,l

[104,106).已知样本中产品净重小于100克的个数是36,则样本中净重

9698100102104106克

大于或等于98克并且小于104克的产品的个数是多少?

解:产品净重小于100克的频率为(0.050+0.100)X2=0.300,已知样本中产品净重小

于100克的个数是36,设样本容量为〃,则^=0.300,所以"=120,净重大于或等于98

克并且小于104克的产品的频率为(0.100+0.150+0.125)X2=0.750,所以样本中净重大

于或等于98克并且小于104克的产品的个数是120X0.750=90.

7.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

API0〜5051-100101-150151-200201〜250251-300>300

级别II]IILIILMV

中度重重度

状况优良轻微污染轻度污染污染中度

污染污染

©©©

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],

(50,100],(100,150],(150,200L(200,250],(250,300]进行分组,得到频率分布直方图

如图.

(1)求频率分布直方图中x的值;

(2)计算一年中空气质量为良和轻微污染的总天数.

(提示:结果用分数表示.已知6=78125,2'=128,

1825+365+1825+1825+9125=9125*365=73X5)

解:(1)由图可知

qf)y——i_(--------------_L----------4----------------1825+9125)X50=1-9125义50'解得”=18250;

48253651825

1192

⑵365X(市黄*50+标X50)=219.

答:一年中空气质量为良和轻微污染的总天数为219天.

8.为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100

条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所

示).

1.001.051.101.15L201.251.30千克

(1)求出各组相应的频率;

(2)估计数据落在[1.15,1.30]中的概率为多少;

10

(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位

置捕捞出120条鱼,其中还有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.

解:(D由频率分布直方图和频率=组距x(箍)可得下表

分组频率

[1.00,1.05)0.05

[1.05,1.10)0.20

[1.10,1.15)0.28

[1.15,1.20)0.30

[1.20,1.25)0.15

[1.25,1.30]0.02

(2)0.30+0.15+0.02=0.47,所以数据落在[1.15,1.30]中的概率约为0.47.

(3)由分层抽样中每个个体被抽到的概率相同知:设水库中鱼的总条数为M则1彳20=

JV

之,即A-2000,故水库中鱼的总条数约为2000条.

第2课时茎叶图

入门答辩——辨析问题解疑惑

新知自解——自读教材找关键

自主学习梳理主干zizAuwefshutizfiugan

//////7<门各料"〃/

2016年CBA新赛季,山东队某队员在该赛季各场比赛的得分情况如下:

15,21,20,19,23,26,25,20

问题1:利用这些数据能否直接判断出该运动员发挥水平?

提示:可以,但会存在偏差.

问题2:能否利用频率分布直方图来分析这些数据?

提示:由于样本数据较少,一般不用直方图.

问题3:由于数据较少,可否有更快捷的作图方式来分析数据?

提不:有.

//////io育*”〃/

1.茎叶图的制作方法

(1)画“茎”:“茎”表示两位数的十位数字,茎相同者共用一个茎,茎按从小到大的

顺序从上向下列出,再画上竖线作为分界线.

(2)添“叶”:“叶”画在分界线的另一侧表示两位数的仝位数字,共茎的叶一般按从

小到大(或从大到小)的顺序同行列出.

2.茎叶图刻画数据的优缺点

(D茎叶图刻画数据的优点:

①所有的信息都可以从茎叶图中得到.

②茎叶图便于记录和表示.

(2)茎叶图刻画数据的缺点:

当样本数据很多时,茎叶图的效果就不是很好了.

[归纳.升华.领悟]----------------------------

1.茎叶图画茎时可以画成纵向的,也可画成横向的.

2.茎叶图表示数据时也可以表示三位数据,此时茎表示前两位,叶表示最后一位.

3.茎叶图主要是针对样本数据不多或数据位数较少时,便于快速记录分析;样本数据

较多或数据位数较多时,不方便使用.

突破考点总结规律

II

高考为标提炼技法

把握热点考向贵在学有所悟

师生共研

考点1茎叶图的绘制

[例1]某中学甲、乙两名同学最近几次的数学考试成绩情况如下:

甲的得分:95,81,75,89,71,65,76,88,94,110,107;

乙的得分:83,86,93,99,88,103,98,114,98,79,101.

画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.

[思路点拨]确定茎与叶,作出茎叶图,并判断比较.

[精解详析]甲、乙两人数学成绩的茎叶图,如图所示.甲乙

从这个茎叶图上可以看出,乙同学的得分情况是大致对称56

的,大多集中在80〜100之间,中位数是98分:65179

80~9818368

甲同学的得分情况除一个特殊得分外,也大致对称,多集中

5193889

在70〜90之间,中位数是88分,但分数分布相对于乙来说,趋

1013

向于低分阶段.

011

因此,乙同学发挥比较稳定,总体得分情况比甲同学好.

[一点通]绘制茎叶图关键是分清茎和叶,一般地说数据是两位数的,十位上数字为

12

“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为

“叶”,解题时要合理的选择茎和叶.

勿"题犯善利

1.某次运动会甲、乙两名射击运动员射击成绩如下:(单位:环)

甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8

乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1

用茎叶图表示甲、乙二人成绩.

解:中间数字表示成绩的整环数,旁边数字表示小数点后的数字.

875

2.某电脑杂志的一篇文章中,每个句子的字数如下:

10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.某报纸的一篇

文章中,每个句子的字数如下:

27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.

(D将这两组数据用茎叶图表示.

(2)进行分析,得出什么结论?

解:⑴如图:

电脑杂志报纸文章

9877554102389

8777654432022347778

3569

(2)电脑杂志上每个句子的字数集中在10〜30之间,而报纸上每个句子的字数集中在

20〜40之间,可看出电脑杂志上每个句子的平均字数比报纸上的少,说明它作为科普读物

需要通俗易懂、简明.

茎叶图的应用

[例2](12分)为缓解车堵现象,解决车堵问题,北京市交通局调查了甲、乙两个交

通站的车流量,在2016年5月随机选取了14天,统计每天上午7:30~9:00间各自的车

流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.

甲乙

8056

1249

54021

8367

14225

8554

76461

32071

(1)甲、乙两个交通站的车流量的中位数分别是多少?

(2)甲、乙两个交通站哪个站更繁忙?说明理由.

[思路点拨]根据茎叶图中的数据分析并作出判断.

[精解详析](1)甲交通站的车流量的中位数为空尹=56.5.(4

分)

乙交通站的车流量的中位数为气包=36.5.(8分)

(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,

从数据的分布情况来看,甲交通站更繁忙.(12分)

[一点通〕对于茎叶图要首先分清楚茎叶所表示的意义及叶的排放规律,它也直观地表

示了数据的集中、离散的程度以及中位数、众数等特征.

犯罪钟“〃/

3.本例中条件不变,试计算甲、乙两交通站的车流量在[10,40]之间的频率.

解:甲站的车流量在[10,40]之间的有4天,

故频率为成4得2.

乙站的车流量在[10,40]之间的有6天,

故频率为$*

4.从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:

甲品种:271273280285285287292

294295301303303307308310314

319323325325328331334337352

乙品种:284292295304306307312

313315315316318318320322322

324327329331333336337343356

14

由以上数据设计了茎叶图如图所示

甲乙

3127

7550284

5422925

8733130467

940312355688

855332022479

741331367

343

2356

根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:

©___________________________________________________________________________

②.

解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大

部分集中在312〜337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于

310等,通过分析可以得到答案.

答案:①甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中

②甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)

[方法・规律•小结]一

茎叶图能够展示数据的分布情况,它的茎是指中间的一列数,叶是从茎的旁边生长出来

的数.用茎叶图表示数据有两个最大优点:一是原始数据没有丢失,二是便于记录和表示.

栏目功能

能I

提速提能,让学生趁热打铁消化所学,

区既练速度又练准度,步步为首步步赢

课下能力提升(十二)

一、填空题

1.在茎叶图中比40大的数据有个.

123

2345

34567

40789

解析:由茎叶图中知比40大的有47、48、49,共3个.

答案:3

2.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小

的有个.

6123

723467

812

解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.

答案:6

3.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,

茎应取.

解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.

答案:12、13、14、15

4.在如图所示的茎叶图中落在[20,40]上的频数为一

11

21237

3025

4034

55

解析:由茎叶图中给出了12个数据,其中在[20,40]上有8个.

答案:8

5.某中学高一(1)甲、乙两同学在高一学年度的考试成绩如下:

甲乙

65

672

543281267

541903

从茎叶图中可得出同学成绩比较好.

解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.

答案:甲

16

二、解答题

6.某中学高二(1)班甲、乙两名同学自上高中以来每次数学考试成绩情况如下(单位:

分):

甲的得分:81,75,91,86,89,71,65,88,94,110,107;

乙的得分:83,86,93,99,88,103,98,114,98,79,101;

画出甲乙两人数学成绩的茎叶图,请根据茎叶图对两个人的成绩情况进行比较.

解:甲、乙两人数学成绩的茎叶图如图所示:

56

5179

98618368

4193889

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论